Next Article in Journal
Non-Dominated Sorting Manta Ray Foraging Optimization for Multi-Objective Optimal Power Flow with Wind/Solar/Small- Hydro Energy Sources
Next Article in Special Issue
A Numerical Approach to Solve the q-Fractional Boundary Value Problems
Previous Article in Journal
Modeling the Chemical Pollution of the Area by the Random-Addition Method
Previous Article in Special Issue
A Local Fractional Elzaki Transform Decomposition Method for the Nonlinear System of Local Fractional Partial Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Local Fractional Integral Hölder-Type Inequalities and Some Related Results

1
College of Mathematics and Computer Science, Guangxi Science & Technology Normal University, Laibin 546199, China
2
Department of Teacher Education, Guangxi Modern Vocational Technology College, Hechi 547000, China
3
Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
4
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
5
Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, Baku AZ1007, Azerbaijan
6
Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(4), 195; https://doi.org/10.3390/fractalfract6040195
Submission received: 9 February 2022 / Revised: 5 March 2022 / Accepted: 25 March 2022 / Published: 31 March 2022

Abstract

:
This paper is devoted to establishing some functional generalizations of Hölder and reverse Hölder’s inequalities with local fractional integral introduced by Yang. Then, based on the obtained results, we derive some related inequalities including local fractional integral Minkowski-type and Dresher-type inequalities, which are some extensions of several existing local fractional integral inequalities.

1. Introduction

Let φ ( u ) , ϕ ( u ) C ( a , b ) . Then the famous Hölder inequality and its reverse version are as follows.
(1)
If s > 1 , 1 / s + 1 / t = 1 , then one has Hölder inequality (see [1]):
a b | φ ( u ) ϕ ( u ) | d u a b | φ ( u ) | s d u 1 / s a b | ϕ ( u ) | t d u 1 / t .
(2)
If 0 < s < 1 , 1 / s + 1 / t = 1 , then one has the reverse Hölder inequality (see [2]):
a b | φ ( u ) ϕ ( u ) | d u a b | φ ( u ) | s d u 1 / s a b | ϕ ( u ) | t d u 1 / t ,
where C ( a , b ) denotes the space of continuous functions defined on the interval ( a , b ) .
The above two inequalities play an important role not only in pure mathematics but also in applied mathematics. A variety of generalizations and refinements have been studied in the literature; the reader can be referred to [3,4,5,6,7,8,9,10,11,12] and the cited references therein.
Nowadays, the theory of local fractional calculus, revised and perfected by Yang [13], has become a very important and popular tool to deal with various non-differentiable problems that appear in many fields such as image processing, cipher securityljio, chaos theory, theoretical physics, engineering sciences.
On the other hand, local fractional calculus also has gained important application in pure mathematics (see [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]). In particular, the local fractional calculus is utilized to establish some new inequalities which are extensions of classical real inequalities on certain fractal spaces. For example, Mo et al. [32] derived generalized Jensen’s inequality and generalized Hermite–Hadamard’s inequality on fractal space, Khan et al. [33] obtained generalized trapezium-type inequalities in the settings of fractal sets, Sun [29] given generalization of some inequalities for generalized harmonically convex functions via local fractional integrals. More recent results in this direction can be found in [13,14,15,16,17,27,29,30,32,33].
Recently, Yang [13] obtained the following local fractional integral Hölder inequality.
Assume that φ ( u ) , ϕ ( u ) C λ ( a , b ) , 0 < λ 1 , 1 / s + 1 / t = 1 with s > 1 , then we have
1 Γ ( 1 + λ ) a b | φ ( u ) ϕ ( u ) | ( d u ) λ 1 Γ ( 1 + λ ) a b | φ ( u ) | s ( d u ) λ 1 / s 1 Γ ( 1 + λ ) a b | ϕ ( u ) | t ( d u ) λ 1 / t ,
where C λ ( a , b ) denotes the fractal space, which consists of local fractional continuous functions defined on the interval ( a , b ) .
Very recently, Chen [14] established a reserve form of (3) as follows.
Assume that φ ( u ) , ϕ ( u ) C λ ( a , b ) , 0 < λ 1 , 1 / s + 1 / t = 1 with 0 < s < 1 , then one has
1 Γ ( 1 + λ ) a b | φ ( u ) ϕ ( u ) | ( d u ) λ 1 Γ ( 1 + λ ) a b | φ ( u ) | s ( d u ) λ 1 / s 1 Γ ( 1 + λ ) a b | ϕ ( u ) | t ( d u ) λ 1 / t .
It is needed to point out that if λ = 1 , then local fractional integral inequalities (3) and (4) reduce to inequalities (1) and (2), respectively. For more results on variations and generalizations of (3) and (4), please refer to [15,16].
Motivated by the above discussion, we shall give some new generalizations of (3) and (4). More precisely, the main purpose of this paper is to establish some functional generalizations of local fractional integral Hölder and reverse Hölder’s inequalities on fractal space. Moreover, the obtained results will be applied to establish several related local fractional integral inequalities, which are functional generalizations of some known results such as local fractional integral Minkowski’s inequality, Dresher’s inequality, and their corresponding reverse versions.
The reset of this paper is planned as follows. In Section 2, we recall some basic definitions and lemmas involving local fractional calculus which are necessary in the sequel. In Section 3, we first state the main results, and then applying the obtained results to establish local fractional integral Minkowski-type inequality and its reverse form. In Section 4, we give a subdividing of local fractional integral Hölder-type inequality. In Section 5, an improvement of local fractional integral Minkowski-type inequality and its reverse version are obtained. In Section 6, local fractional integral Dresher-type inequality and its reverse version are established. In Section 7, we present the conclusion.

2. Preliminaries

For the sake of convenience, we list some basic concepts and notions with respect to local fractional calculus as follows.
Definition 1
(see [13,18,19]). A non-differentiable function φ : R R λ ( 0 < λ 1 ) , u φ ( u ) is said to be local fractional continuous at u 0 , if for any ε > 0 , there exists a positive constant δ, such that | φ ( u ) φ ( u 0 ) | < ε λ whenever | u u 0 | < δ . If the function φ ( u ) is local fractional continuous on the interval ( a , b ) , then we denote φ ( u ) C λ ( a , b ) .
Definition 2
(see [13,18,19]). Assume that φ ( u ) C λ ( a , b ) . Local fractional derivative of φ ( u ) of order λ at u = u 0 is defined by
φ ( λ ) ( u 0 ) = d λ φ ( u ) d u λ | u = u 0 = lim u u 0 Γ ( 1 + λ ) ( φ ( u ) φ ( u 0 ) ) ( u u 0 ) λ ,
where Γ ( 1 + λ ) = 0 e x x λ 1 d x , x > 0 .
Definition 3
(see [13,18,19]). Assume that φ ( u ) C λ ( a , b ) , then local fractional integral of φ ( u ) in the interval [ a , b ] is defined as follows.
a I b λ φ ( u ) = 1 Γ ( 1 + λ ) a b φ ( u ) ( d u ) λ = 1 Γ ( 1 + λ ) lim λ 0 i = 1 N 1 φ ( u i ) ( Δ u i ) λ ,
where Δ u j = u j + 1 u j , Δ u = max { Δ u 1 , , Δ u j , } , and [ u j , u j + 1 ] , j = 1 , 2 , , N 1 , u 0 = a , u N = b is a partition of the interval α k j = t / p k . Here, we denote a I b λ φ ( u ) = 0 if a = b , a I b λ φ ( u ) = b I a λ φ ( u ) if a < b .
Definition 4
(See [13,18,19]). Assume that φ ( u ) = F ( λ ) ( u ) C λ ( a , b ) , then one has
a I b λ φ ( u ) = F ( b ) F ( a ) .
Lemma 1
(See [13,18,19]). Assume that φ ( u ) and ϕ ( u ) local fractional continuous on [ a , b ] .
(1)
If φ ( u ) 0 for all u [ a , b ] , then 1 Γ ( 1 + λ ) a b φ ( u ) ( d u ) λ 0 .
(2)
If 0 φ ( u ) ϕ ( u ) for all u [ a , b ] , then
1 Γ ( 1 + λ ) a b φ ( u ) ( d u ) λ 1 Γ ( 1 + λ ) a b ϕ ( u ) ( d u ) λ .
(3)
If φ ( u ) 0 for all u [ a , b ] , then φ ( u ) = 0 if and only if 1 Γ ( 1 + λ ) a b φ ( u ) ( d u ) λ = 0 .

3. Main Results

In this section, we give our main results.
Theorem 1
(Hölder-type inequality). Assume that s > 1 , 1 / s + 1 / t = 1 . Let Ξ l ( ψ 1 , , ψ l ) > 0 , Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l, m and k variables, respectively. Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] , then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 / s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 / t .
Moreover, the equality in (5) holds if and only if A | Ψ m ( φ 1 , , φ m ) | s = B | Z k ( ϕ 1 , , ϕ k ) | t , where A and B are constant.
Proof. 
Denoting Θ ( Ξ l , Ψ m , Z k ) by the right-hand side of (5). By item 3 of Lemma 1, it is easy to see that if Θ ( Ξ l , Ψ m , Z k ) = 0 , then Ψ m ( φ 1 , , φ m ) = 0 or Z k ( ϕ 1 , , ϕ k ) = 0 . Hence, we may assume that Θ ( Ξ l , Ψ m , Z k ) 0 and take
f ( u ) = ( Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) ) 1 / s | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | s ( d u ) λ
and
g ( u ) = ( Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) ) 1 / t | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | t ( d u ) λ .
From the Young’s inequality, it follows that
1 Γ ( 1 + λ ) a b f ( u ) g ( u ) ( d u ) λ 1 Γ ( 1 + λ ) a b [ f s ( u ) s + g t ( u ) t ] ( d u ) λ = 1 s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , , φ m ( u ) ) | s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , , φ m ( u ) ) | s ( d u ) λ ( d u ) λ + 1 t 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Z k ( ϕ 1 ( u ) , , ϕ k ( u ) ) | t 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Z k ( ϕ 1 ( u ) , , ϕ k ( u ) ) | t ( d u ) λ ( d u ) λ = 1 s + 1 t = 1 .
Therefore, we conclude that the desired inequality holds. □
Theorem 2
(reverse Hölder-type inequality). Assume that 0 < s < 1 , 1 / s + 1 / t = 1 . Let Ξ l ( ψ 1 , , ψ l ) > 0 , Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l, m and k variables, respectively. Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] , then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 / s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 / t .
Moreover, the equality holds in (6) if and only if A | Ψ m ( φ 1 , φ 2 , , φ m ) | s = B | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | t , where A and B are constants.
Proof. 
Let Θ ( Ξ l , Ψ m , Z k ) be the right-hand side of the inequality (6). If Θ ( Ξ l , Ψ m , Z k ) = 0 , then Ψ m ( φ 1 , φ 2 , , φ m ) = 0 or Z k ( ϕ 1 , ϕ 2 , , ϕ k ) = 0 and the conclusion follows by item 3 of Lemma 1. If Θ ( Ξ l , Ψ m , Z k ) 0 , then set
F ( u ) = ( Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) ) 1 / s | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | s ( d u ) λ
and
G ( u ) = ( Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) ) 1 / t | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , ψ 2 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , φ 2 ( u ) , , φ m ( u ) ) | t ( d u ) λ .
Thanks to the reverse Young’s inequality (see [34])
X Y 1 s X s + 1 t Y t , X , Y > 0 , 0 < s < 1 , 1 / s + 1 / t = 1
with equality holds if and only if X = Y , we have
1 Γ ( 1 + λ ) a b F ( u ) G ( u ) ( d u ) λ 1 Γ ( 1 + λ ) a b [ F s ( u ) s + G t ( u ) t ] ( d u ) λ = 1 s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , , φ m ( u ) ) | s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Ψ m ( φ 1 ( u ) , , φ m ( u ) ) | s ( d u ) λ ( d u ) λ + 1 t 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Z k ( ϕ 1 ( u ) , , ϕ k ( u ) ) | t 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 ( u ) , , ψ l ( u ) ) | Z k ( ϕ 1 ( u ) , , ϕ k ( u ) ) | t ( d u ) λ ( d u ) λ = 1 s + 1 t = 1 .
Therefore, we obtain the desired inequality. □
It should be pointed out that if Ξ l ( ψ 1 , , ψ l ) = 1 , Ψ m ( φ 1 , , φ m ) = φ and Z k ( ϕ 1 , , ϕ k ) = ϕ , then (5) and (6) reduce to (3) and (4), respectively.
Theorem 3
(Minkowski-type inequality). Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] . Let Ξ l ( ψ 1 , , ψ l ) > 0 , Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l, m and k variables, respectively. Let s > 1 . Then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 / s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 / s + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 / s .
Moreover, the equality holds if in (7) Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) are proportional.
Proof. 
It follows from the triangle inequality that
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s 1 ( d u ) λ + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s 1 ( d u ) λ .
Next, applying local fractional integral Hölder’s inequality (5) with t = s / ( s 1 ) to the above inequality, it can be derived that the following inequality holds.
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 / s × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( s 1 ) ( d u ) λ 1 / t + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 / s × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( s 1 ) ( d u ) λ 1 / t = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 / s + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 / s × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( s 1 ) ( d u ) λ 1 / t .
Dividing the two sides of the above inequality by
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( s 1 ) ( d u ) λ 1 / t ,
we obtain the desired inequality. □
Theorem 4
(reverse Minkowski-type inequality). Let 0 < s < 1 , Ξ l ( ψ 1 , , ψ l ) > 0 , Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l, m and k variables, respectively. Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] , then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 / s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 / s + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 / s .
Moreover, the equality holds if in (8) Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) are proportional.
Proof. 
Let
P = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ ,
Q = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ ,
Π = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 / s + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 / s .
By local fractional integral reverse Hölder inequality (6), in view of 0 < s < 1 , we have
Π = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) ( | Ψ m ( φ 1 , , φ m ) | s P 1 / s 1 + | Z k ( ϕ 1 , , ϕ k ) | s Q 1 / s 1 ) ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( P 1 / s + Q 1 / s ) 1 s ( d u ) λ = Π 1 s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ .
From inequality (9), it follows that local fractional integral reserve Minkowski’s inequality holds and the theorem is completely proved. □
It is needed to mentioned that if Ξ l ( ψ 1 , , ψ l ) = 1 , Ψ m ( φ 1 , , φ m ) = φ and Z k ( ϕ 1 , , ϕ k ) = ϕ , then (7) and (8) reduce to the results of [13] and [14], respectively.

4. A Subdividing of Local Fractional Integral Hölder-Type Inequality

In this section, we establish a subdividing of local fractional integral Hölder-type inequality (5) which an extension of the result in [16], its reverse form also is presented.
Theorem 5.
Let Ξ l ( ψ 1 , , ψ l ) > 0 , Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l, m and k variables, respectively. Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] , and s , t R , and let p = ( s t ) / ( 1 t ) , q = ( s t ) / ( s 1 ) ,
(1)
if s < 1 < t or s > 1 > t , then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s p ( d u ) λ 1 / p 2 × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t q ( d u ) λ 1 / q 2 × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | t p ( d u ) λ 1 / p q × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s q ( d u ) λ 1 / p q
with equality if and only if Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) are proportional.
(2)
if s > t > 1 or s < t < 1 ; t > s > 1 or t < s < 1 , then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s p ( d u ) λ 1 / p 2 × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t q ( d u ) λ 1 / q 2 × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | t p ( d u ) λ 1 / p q × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s q ( d u ) λ 1 / p q
with equality if and only if Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) are proportional.
Proof. 
(1) Let p = s t 1 t and in view of s < 1 < t or s > 1 > t . Then one has
p = s t 1 t > 1 ,
by local fractional integral Hölder’s inequality (3) with indices s t 1 t and s t s 1 , we have
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | ( d u ) λ = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) [ | Ψ m Z k | s ] ( 1 t ) / ( s t ) [ | Ψ m Z k | t ] ( s 1 ) / ( s t ) ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ ( 1 t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ ( s 1 ) / ( s t )
with equality if and only if | Ψ m Z k | s and | Ψ m Z k | t are proportional.
On the other hand, from local fractional integral Hölder’s inequality again for p = s t 1 t > 1 , it follows that
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( s t ) / ( 1 t ) ( d u ) λ ( 1 t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( s t ) / ( s 1 ) ( d u ) λ ( s 1 ) / ( s t )
with equality if and only if | Ψ m | s ( s t ) / ( 1 t ) and | Z k | s ( s t ) / ( s 1 ) are proportional, and
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | t ( s t ) / ( 1 t ) ( d u ) λ ( 1 t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t ( s t ) / ( s 1 ) ( d u ) λ ( s 1 ) / ( s t )
with equality if and only if | Ψ m | t ( s t ) / ( 1 t ) f t ( s t ) / ( 1 t ) and | Z k | t ( s t ) / ( s 1 ) are proportional.
From (12)–(14), the case (1) of Theorem 5 is proved.
(2) Let p = s t 1 t and in view of s > t > 1 or s < t < 1 , it is obvious that
0 < p = s t 1 t < 1 .
Since t > s > 1 or t < s < 1 , one has s t 1 t < 0 . Based on local fractional integral reverse Hölder’s inequality (4) with indices s t 1 t and s t s 1 , we have
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | ( d u ) λ = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) [ | Ψ m Z k | s ] ( 1 t ) / ( s t ) [ | Ψ m Z k | t ] ( s 1 ) / ( s t ) ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ ( 1 t ) / ( s t ) × 1 Γ ( 1 + α ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ ( s 1 ) / ( s t )
with equality if and only if | Ψ m Z k | s and | Ψ m Z k | t are proportional.
On the other hand, by local fractional integral reverse Hölder’s inequality (4) again for 0 < p = s t 1 t < 1 or p = s t 1 t < 0 , we obtain
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( s t ) / ( 1 t ) ( d u ) λ ( 1 t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( s t ) / ( s 1 ) ( d u ) λ ( s 1 ) / ( s t )
with equality if and only if | Ψ m | s ( s t ) / ( 1 t ) and | Z k | s ( s t ) / ( s 1 ) are proportional, and
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | t ( s t ) / ( 1 t ) ( d u ) λ ( 1 t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t ( s t ) / ( s 1 ) ( d u ) λ ( s 1 ) / ( s t )
with equality if and only if | Ψ m | t ( s t ) / ( 1 t ) f t ( s t ) / ( 1 t ) and | Z k | t ( s t ) / ( s 1 ) are proportional.
From (15)–(17), the proof of case (2) of Theorem 5 is completed. □

5. An Improvement of Local Fractional Integral Minkowski-Type Inequality

In this section, we are devoted to deriving an improvement of local fractional integral Minkowski-type inequality (7), its reverse version is also obtained.
Theorem 6.
Let Ξ l ( ψ 1 , , ψ l ) > 0 , Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l, m and k variables, respectively. Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] , p > 0 , s , t R \ { 0 } , and s t .
(1)
Let p , s , t R be different, such that s , t > 1 and ( s t ) / ( p t ) > 1 . Then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | s ( d u ) λ 1 s + 1 Γ ( 1 + λ ) a b Ξ l | Z k | s ( d u ) λ 1 s s ( p t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | t ( d u ) λ 1 t + 1 Γ ( 1 + λ ) a b Ξ l | Z k | t ( d u ) λ 1 t t ( p t ) / ( s t ) .
(2)
Let p , s , t R be different, such that 0 < s , t < 1 and ( s t ) / ( p t ) < 1 . Then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | s ( d u ) λ 1 s + 1 Γ ( 1 + λ ) a b Ξ l | Z k | s ( d u ) λ 1 s s ( p t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | t ( d u ) λ 1 t + 1 Γ ( 1 + λ ) a b Ξ l | Z k | t ( d u ) λ 1 t t ( p t ) / ( s t ) .
Proof. 
(1) According to ( s t ) / ( p t ) > 1 , we have
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ = 1 Γ ( 1 + λ ) a b Ξ l ( | Ψ m + Z k | s ) ( p t ) / ( s t ) ( | Ψ m + Z k | t ) ( s p ) / ( s t ) ( d u ) λ .
By using local fractional integral Hölder’s inequality (3) with indices ( s t ) / ( p t ) and ( s t ) / ( s p ) , it can be concluded that
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ ( p t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ ( s p ) / ( s t ) .
On the other hand, by using local fractional integral Minkowski’s inequality (7) for s > 1 and t > 1 , respectively, we obtain
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 s + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 s
and
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 t 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | t ( d u ) λ 1 t + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 t .
From (20)–(22), it follows that the desired result holds.
(2) Based on ( s t ) / ( p t ) < 1 , a direct computation yields
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ = 1 Γ ( 1 + λ ) a b Ξ l ( | Ψ m + Z k | s ) ( p t ) / ( s t ) ( | Ψ m + Z k | t ) ( s p ) / ( s t ) ( d u ) λ .
By using local fractional integral reverse Hölder’s inequality (4) with indices ( s t ) / ( p t ) and ( s t ) / ( s p ) , we have
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ ( p t ) / ( s t ) × 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ ( s p ) / ( s t ) .
On the other hand, in view of local fractional integral Minkowski’s inequality (8) for the cases of 0 < s < 1 and 0 < t < 1 , we obtain
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 s 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | s ( d u ) λ 1 s + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | s ( d u ) λ 1 s
and
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 t 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Ψ m ( φ 1 , , φ m ) | t ( d u ) λ 1 t + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | t ( d u ) λ 1 t .
By (23)–(25), we conclude that the desired result holds. □
Remark 1. 
(1) For Theorem 6, for p > 1 , taking s = p + ε , t = p ε , when p , s , t are different, s , t > 1 , and ( s t ) / ( p t ) / 2 > 1 , and taking ε 0 , it follows that (18) is transformed into (7).
(2) For Theorem 6, for 0 < p < 1 , taking s = p + ε , t = p ε , when p , s , t are different, 0 < s , t < 1 , and 0 < ( s t ) / ( p t ) / 2 < 1 , and taking ε 0 , it follows that (19) is transformed into (8).
(3) If Ξ l ( ψ 1 , , ψ l ) = 1 , Ψ m ( φ 1 , , φ m ) = φ and Z k ( ϕ 1 , , ϕ k ) = ϕ , then Theorem 6 becomes to the results of [17].

6. Dresher-Type Inequality and Its Reverse Form

The aim of this section is to establish a functional generalization of local fractional integral Dresher’s inequality obtained by Chen [14], its reverse form is also derived.
Theorem 7
(Dresher’s inequality). Let 0 < r 1 p , Ξ l ( ψ 1 , , ψ l ) > 0 , Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l, m and k variables, respectively. Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] , then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) + Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) + Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | r ( d u ) λ 1 / ( p r ) 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | r ( d u ) λ 1 / ( p r ) + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | r ( d u ) λ 1 / ( p r ) ,
where the equality holds true if and only if the functions | Ψ m ( φ 1 , φ 2 , , φ m ) | and | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | are proportional.
Proof. 
It is clear that
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) + Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | p ( d u ) λ 1 / ( p r ) 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | p ( d u ) λ 1 / p + 1 Γ ( 1 + λ ) a b Ξ l | Z k | p ( d u ) λ 1 / p 1 / ( p r ) ,
by local fractional intehral Minkowski’s inequality (7). Next, by the right-hand side of above inequality we have
1 Γ ( 1 + λ ) a b Ξ l | Ψ m | p ( d u ) λ 1 / p + 1 Γ ( 1 + λ ) a b Ξ l | Z k | p ( d u ) λ 1 / p 1 / ( p r ) = 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / p 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / p + 1 Γ ( 1 + λ ) a b Ξ l | Z k | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / p 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / p 1 / ( p r ) .
By using local fractional integral Hölder’s inequality with q = p / ( p 1 ) to the above equality, we have
1 Γ ( 1 + λ ) a b Ξ l | Ψ m | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / p 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / p + 1 Γ ( 1 + λ ) a b Ξ l | Z k | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / p 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / p 1 / ( p r ) 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / ( p r ) + 1 Γ ( 1 + λ ) a b Ξ l | Z k | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / ( p r ) × 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / r + 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / r r / ( p r ) .
From local fractional integral reverse Minkowski’s inequality with 0 < r < 1 , it follows that
1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / r + 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / r r 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) + Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | r ( d u ) λ . .
From (27)–(29), it is concluded that the desired inequality holds. □
Theorem 8
(reverse Dresher’s inequality). Let p 0 r 1 , Ξ l ( ψ 1 , , ψ l ) > 0 ,   Ψ m ( φ 1 , , φ m ) and Z k ( ϕ 1 , , ϕ k ) be three arbitrary functions of l; m and k variables, respectively. Assume that { φ i ( u ) } i = 1 m , { ϕ i ( u ) } i = 1 k and { ψ i ( u ) } i = 1 l are local fractional continuous functions on [ a , b ] , then
1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) + Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) + Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | r ( d u ) λ 1 / ( p r ) 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | r ( d u ) λ 1 / ( p r ) + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | r ( d u ) λ 1 / ( p r ) ,
where the equality holds true if and only if the functions | Ψ m ( φ 1 , φ 2 , , φ m ) | and | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | are proportional.
Proof. 
Let λ 1 0 , λ 2 0 , η 1 > 0 , and η 2 > 0 , and 1 < α < 0 , applying the Radon’s inequality (see [3])
i = 1 n x i p y i p 1 < ( i = 1 n x i ) p ( i = 1 n y i ) p 1 , x k 0 , y k > 0 , 0 < p < 1 ,
we have
λ 1 α + 1 η 1 α + λ 2 α + 1 η 2 α ( λ 1 + λ 2 ) α + 1 ( η 1 + η 2 ) α ,
where the equality holds true if and only if ( λ ) and ( η ) are proportional.
Let
λ 1 = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | p ( d u ) λ 1 / p ,
η 1 = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | r ( d u ) λ 1 / r ,
λ 2 = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | p ( d u ) λ 1 / p ,
η 2 = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | r ( d u ) λ 1 / r ,
and set α = r p r . In term of (31)–(35), one has
λ 1 α + 1 η 1 α + λ 2 α + 1 η 2 α = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | p ( d u ) λ ( α + 1 ) / p 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | r ( d u ) λ α / r + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | p ( d u ) λ ( α + 1 ) / p 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | r ( d u ) λ α / r = 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , ψ 2 , , ψ l ) | Ψ m ( φ 1 , φ 2 , , φ m ) | r ( d u ) λ 1 / ( p r ) + 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ 1 Γ ( 1 + λ ) a b Ξ l ( ψ 1 , , ψ l ) | Z k ( ϕ 1 , , ϕ k ) | r ( d u ) λ 1 / ( p r ) ( λ 1 + λ 2 ) α + 1 ( η 1 + η 2 ) α = [ 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | p ( d u ) λ 1 / p + 1 Γ ( 1 + λ ) a b Ξ l | Z k | p ( d u ) λ 1 / p ] p / ( p r ) [ 1 Γ ( 1 + λ ) a b Ξ l | Ψ m | r ( d u ) λ 1 / r + 1 Γ ( 1 + λ ) a b Ξ l | Z k | r ( d u ) λ 1 / r ] r / ( p r ) .
Since 1 < α = r p r < 0 , we may assume p < 0 < r , and by local fractional integral Minkowski inequality for p < 0 and 0 < r 1 , we obtain, respectively
1 Γ ( 1 + λ ) a b Ξ l | Ψ m ( φ 1 , , φ m ) | p ( d u ) λ 1 p + 1 Γ ( 1 + λ ) a b Ξ l | Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ 1 p p 1 Γ ( 1 + λ ) a b Ξ l | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | p ( d u ) λ
with equality if and only if | Ψ m ( φ 1 , φ 2 , , φ m ) | and | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | are proportional, and
1 Γ ( 1 + λ ) a b Ξ l | Ψ m ( φ 1 , , φ m ) | r ( d u ) λ 1 r + 1 Γ ( 1 + λ ) a b Ξ l | Z k ( ϕ 1 , , ϕ k ) | r ( d u ) λ 1 r r 1 Γ ( 1 + λ ) a b Ξ l | Ψ m ( φ 1 , , φ m ) + Z k ( ϕ 1 , , ϕ k ) | r ( d u ) λ ,
where the equality holds true if and only if | Ψ m ( φ 1 , φ 2 , , φ m ) | and | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | are proportional,
From equality conditions for (31), (37) and (38), it follows that the sign of equality in (30) holds if and only if | Ψ m ( φ 1 , φ 2 , , φ m ) | and | Z k ( ϕ 1 , ϕ 2 , , ϕ k ) | are proportional.
From (36)–(38), we arrive to desired local fractional integral reverse Dresher’s inequality.

7. Conclusions

In this paper, with the help of local fractional integral theory, which is used in various problems involving continuously nondifferentiable functions and fractals, we establish some functional generalizations of local fractional integral Hölder-type inequality and its reverse form. Besides that, we apply obtained inequalities to derive Minkowski-type and Dresher-type inequalities, as well as their reverse forms. It also is shown that many existing local fractional integral inequalities are special cases of the main results which are obtained in this work. In future work, we will continue to consider the applications of the obtained results.

Author Contributions

Writing–original draft, G.C.; Review and editing, J.L. and C.L.; Methodology, H.M.S. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Natural Sciences Foundation of Guangxi Province of China under Grant (No. 2021GXNSFAA075001).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to express their sincere thanks to the editor and anonymous referees for their valuable suggestions and comments on improving this paper.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. Mitrinovi’c, D.S. Analytic Inequalities; Springer: New York, NY, USA, 1970. [Google Scholar]
  2. Kuang, J. Applied Inequalities; Shandong Science Press: Jinan, China, 2003. [Google Scholar]
  3. Hardy, G.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
  4. Yang, X. A generalization of Hölder inequality. J. Math. Anal. Appl. 2000, 247, 328–330. [Google Scholar] [CrossRef]
  5. Yang, X. Refinement of Hölder inequality and application to Ostrowski inequality. Appl. Math. Comput. 2003, 138, 455–461. [Google Scholar] [CrossRef]
  6. Yang, X. A note on Hölder inequality. Appl. Math. Comput. 2003, 134, 319–322. [Google Scholar] [CrossRef]
  7. Yang, X. Hölder’s inequality. Appl. Math. Lett. 2003, 16, 897–903. [Google Scholar] [CrossRef]
  8. Wu, S.; Debnath, L. Generalizations of Aczél’s inequality and Popoviciu’s inequality. Indian J. Pure Appl. Math. 2005, 36, 49–62. [Google Scholar] [CrossRef] [Green Version]
  9. Wu, S.-H. Generalization of a sharp Hölder’s inequality and its application. J. Math. Anal. Appl. 2007, 332, 741–750. [Google Scholar] [CrossRef]
  10. Wu, S. A new sharpened and generalized version of Hölder’s inequality and its applications. Appl. Math. Comput. 2008, 197, 708–714. [Google Scholar] [CrossRef]
  11. Kwon, E.G.; Bae, E.K. On a continuous form of Hölder inequality. J. Math. Anal. Appl. 2008, 343, 585–592. [Google Scholar] [CrossRef]
  12. Yang, W. A functional generalization of diamond-α integral Hölder’s inequality on time scales. Appl. Math. Lett. 2010, 23, 1208–1212. [Google Scholar] [CrossRef] [Green Version]
  13. Yang, X.-J. Local Fractional Functional Analysis and Its Applications; Asian Academic Publisher: Hong Kong, China, 2011. [Google Scholar]
  14. Chen, G.-S. Generalizations of Hölder’s and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 2013, 198405. [Google Scholar] [CrossRef]
  15. Chen, G.-S.; Srivastava, H.M.; Wang, P.; Wei, W. Some further generalizations of Hölder’s inequality and related results on fractal space. Abstr. Appl. Anal. 2014, 2014, 832802. [Google Scholar] [CrossRef]
  16. Chen, G.-S. A Subdividing of Local Fractional Integral Hölder’s Inequality on Fractal Space. Adv. Mater. Res. 2014, 998–999, 976–979. [Google Scholar] [CrossRef]
  17. Chen, G.-S. An Improvement of Local Fractional Integral Minkowski’s Inequality on Fractal Space. Adv. Mater. Res. 2014, 998–999, 980–983. [Google Scholar] [CrossRef]
  18. Yang, X.-J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4, 1–225. [Google Scholar]
  19. Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
  20. Yang, X.-Y.; Baleanu, D.; Machado, J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 2013, 131. [Google Scholar] [CrossRef]
  21. Yang, A.-M.; Yang, X.-J.; Li, Z.-B. Local fractional series expansion method for solving wave and diffusion equations on Cantor sets. Abstr. Applied Anal. 2013, 2013, 351057. [Google Scholar] [CrossRef]
  22. Yang, X.-J.; Baleanu, D.; Khan, Y. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. Phys. 2014, 59, 36–48. [Google Scholar]
  23. Yang, J.; Baleanu, D.; Yang, X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 2013, 632309. [Google Scholar] [CrossRef] [Green Version]
  24. Yang, X.-J. Local fractional integral equations and their applications. Adv. Comput. Sci. Appl. (ACSA) 2012, 1, 234–239. [Google Scholar]
  25. Yang, X.-J. Generalized local fractional Taylor’s formula with local fractional derivative. J. Expert Syst. 2012, 1, 26–30. [Google Scholar]
  26. Yang, X.-J. Local fractional Fourier analysis. Adv. Mech. Eng. Appl. 2012, 1, 12–16. [Google Scholar]
  27. Sarikaya, M.Z.; Tunc, T.; Budak, H. On generalized some integral inequalities for local fractional integrals. Appl. Math. Comp. 2016, 276, 316–323. [Google Scholar] [CrossRef]
  28. Chu, Y.-M.; Rashid, S.; Abdeljawad, T.; Khalid, A.; Kalsoom, H. On new generalized unified bounds via generalized exponentially harmonically s-convex functions on fractal sets. Adv. Differ. Equ. 2021, 2021, 218. [Google Scholar] [CrossRef]
  29. Sun, W.-B. On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals. Quaest. Math. 2019, 42, 1159–1183. [Google Scholar] [CrossRef]
  30. Batbold, T.; Krnić, M.; Vuković, P. A unified approach to fractal Hilbert-type inequalities. J. Inequalities Appl. 2019, 2019, 117. [Google Scholar] [CrossRef]
  31. Li, Y.-M.; Rashid, S.; Hammouch, Z.; Baleanu, D.; Chu, Y.-M. New newton’s type estimates pertaining to local fractional integral via generalized p-convexity with applications. Fractals 2021, 29, 2140018. [Google Scholar] [CrossRef]
  32. Mo, H.; Sui, X.; Yu, D. Generalized convex functions and some inequalites on fractal sets. arXiv 2014, arXiv:1404.3964. [Google Scholar]
  33. Khan, Z.A.; Rashid, S.; Ashraf, R.; Baleanu, D.; Chu, Y.-M. Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property. Adv. Differ. Equ. 2020, 2020, 657. [Google Scholar] [CrossRef]
  34. Xing, J.-S.; Su, K.-Q.; Tao, P.-F. The applications of Young inequality and Young inverse inequality. J. Zhoukou Norm. Univ. 2007, 24, 37–39. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Chen, G.; Liang, J.; Srivastava, H.M.; Lv, C. Local Fractional Integral Hölder-Type Inequalities and Some Related Results. Fractal Fract. 2022, 6, 195. https://doi.org/10.3390/fractalfract6040195

AMA Style

Chen G, Liang J, Srivastava HM, Lv C. Local Fractional Integral Hölder-Type Inequalities and Some Related Results. Fractal and Fractional. 2022; 6(4):195. https://doi.org/10.3390/fractalfract6040195

Chicago/Turabian Style

Chen, Guangsheng, Jiansuo Liang, Hari M. Srivastava, and Chao Lv. 2022. "Local Fractional Integral Hölder-Type Inequalities and Some Related Results" Fractal and Fractional 6, no. 4: 195. https://doi.org/10.3390/fractalfract6040195

Article Metrics

Back to TopTop