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Abstract: In this present paper, we study the difference method for solving a boundary value
problem of the Caputo type q-fractional differential equation. This method is based on the numerical
quadrature of the q-fractional derivative and the q-Taylor expansion of related function. We first
derive the truncation error boundness of O(4x2

n)-order and prove the existence and uniqueness of
the numerical solution. Then, we prove the stability of the numerical solution and give the error
estimation. Numerical experiments finally verify the validity of the theoretical analysis.
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1. Introduction

The history of fractional calculus can be dated back to 1695 and it can be applied to the
investigation of arbitrary order integrals and derivatives. It has gained quite a lot of interest
due to its widespread application in science and engineering fields such as physics, biology,
chemistry and economics [1]. For example, Baleanu et al. [2] modeled some processes
on real chemical reactions with partial differential equations of the fractional order. They
studied a novel modeling of the fractional multiterm boundary value problems on each
edge of the graph representation of the glucose molecule and derived some existence
results. In addition, a fractional-order derivative can retain the effect of system memory.
Therefore, it can describe the processes involving memory and hereditary properties such
as electromagnetic waves and heat transfer. For example, Mohammadi et al. [3] used a box
model to describe hearing loss in children caused by the mumps virus with the Caputo–
Fabrizio fractional derivative. It can also model the transmittance of anthrax between
animals [4]. For more works on the application of fractional calculus, we refer readers
to [5–7] and the references therein.

A lot has been achieved in the study of fractional calculus, but mostly of a continuous
case. It is obvious that the discrete analogues of fractional differential equations are also
very useful in applications. Some results concerning the differential equations carry over
easily to corresponding results for difference equations while other results seem to be
different from their continuous counterparts [8,9]. Therefore, it is necessary to develop
fractional differential equations on a discrete time scale [10]. The theory of time scales
was first introduced by Stefan Hilger in his PhD thesis in order to unify continuous and
discrete analysis [11]. The time scale calculus has a tremendous potential in applications.
For example, it can be used to model populations of insects which are continuous while in
season, die out in winter while their eggs are dormant or are incubating and then hatch in
a new season and can give rise to a nonoverlapping population [10]. A typical time scale is
q-geometric set Tq,b = {0} ∪ {bqn, n = 0, 1, · · ·} on which some physical processes occur
and the corresponding equations are called q-fractional differential equations.

In the past few years, the q-fractional differential equations based on the q-calculus
have been widely studied by engineers and mathematicians. The concept of the q-calculus
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(also known as quantum calculus) was first proposed by Jackson [12] in 1908. This kind of
equation mainly describes some physical processes which occur on Tq,b such as quantum
dynamics, discrete dynamical systems and discrete stochastic processes [1,10,13–17]. The
scale index q of set Tq,b is used to describe the discrete path on which the corresponding
physical process occurs. With the rapid development of the q-calculus theory, the q-difference
operator theory, q-Laplace transform, q-Taylor expansion, q-Bernstein polynomial, q-Sturm–
Liouville theory and other related results have been proposed successively. For more details
of the q-calculus and the q-fractional calculus, we refer readers to [14,15,18–23]. Compared
with the classical fractional calculus, the research of the q-fractional calculus is still immature.
On the boundary problems of the q-fractional differential equations, Ferreira [24] proposed
a sufficient condition for the existence of nontrivial solutions by using the fixed point
theorem of cone compression and properties of Green function. Shahed et al. [25] studied
the existence of positive solutions. Liang et al. [26] investigated the existence and uniqueness
of solutions for a class of q-fractional differential equations with three point boundary value
problems. In [27], by using the Guo–Krasnoselskii fixed point theorem, the authors gave
a sufficient condition for the existence of a positive solution for a class of boundary value
problems of nonlinear q-fractional difference equations.

On the discrete approximation methods for the initial value problems of q-fractional
differential equations, Abdeljawad et al. [28,29] presented a successive iteration method
to find the approximation solution. They derived the truncation error bounds, but did
not give the stability analysis. Then, Salahshour and Ahmadian et al. [30] investigated the
convergence condition of the successive approximation method proposed in [29]. Further-
more, Zhang and Tong [31] proposed a new difference formula by using the piecewise
linear interpolation to discretize the Caputo type q-fractional derivative. They proved the
unconditional stability of this difference formula and gave the estimate of convergence
order. Wu et al. [32] constructed a discrete approximation scheme with the variational
iterative method. However, until now, no numerical methods have been presented to solve
the boundary value problem of q-fractional differential equations.

In this paper, we present a difference method to solve the boundary value problem
of Caputo type q-fractional differential equations: −cDα

q u(x) + a(x)u(x) = f (x). We
discretize the q-fractional derivative cDα

q u(x) by using the numerical quadrature and in
order to enhance the stability, we further discretize the term a(x)u(x) by means of the
q-Taylor expansion. Since the q-fractional differential equations are usually defined on
time scale set Tq,b, our difference scheme must also be established on set Tq,b, that is, the
mesh points are in set Tq,b. This makes the stability analysis and error estimate much more
difficult than that of the usual difference schemes which are established on the selected
artificially meshes. We first derive the truncation error bound and prove the existence and
uniqueness of the difference solution. Then, we prove the stability and obtain an error
estimation of O(4x2

n) for the difference scheme. Finally, we use numerical examples to
illustrate the effectiveness of the difference method.

This paper is organized as follows. We first introduce some notations and relevant
operations about q-calculus and q-fractional calculus in Section 2. In Section 3, we establish
the difference method for solving a boundary value problem of the Caputo type q-fractional
differential equation and derive the boundness of the truncation error. Section 4 is devoted
to the stability analysis and error estimation of the difference method. In Section 5, we
provide some numerical examples to illustrate the theoretical analysis.

2. Preliminaries

We first introduce some definitions and operations about q-calculus and q-fractional
calculus.

Let N = {1, 2, . . .} be the set of positive integers and 0 < q < 1. The q-shifted operation
is defined as

(x− s)(0)q = 1, (x− s)(m)
q =

m−1

∏
k=0

(x− qks), m ∈ N. (1)
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If α ∈ R and α /∈ N, then

(x− s)(α)q = xα
∞

∏
k=0

x− qks
x− qα+ks

, 0 ≤ s ≤ x. (2)

Denote C as the set of complex numbers. The q-Gamma function Γq(x) is defined as

Γq(x) = (1− q)(x−1)
q (1− q)1−x, x ∈ C \ {−n, n ∈ {0} ∪N}. (3)

The following notations are defined by

[x]q =
1− qx

1− q
, [m]q! = [m]q[m− 1]q · · · [1]q.

Then, we can see that

Γq(1) = 1, Γq(m + 1) = [m]q!, Γq(x + 1) = [x]qΓq(x).

For a given q ∈ R, a set Aq ∈ R is called q-geometric if qx ∈ Aq whenever x ∈ Aq.
That is, ∀x ∈ Aq, Aq includes geometric sequences {xqm}∞

m=0 of all. A special q-geometric
set is Aq = {qm : m ∈ Z} ∪ {0}, where 0 < q < 1 and Z is the set of integers.

Definition 1 ( [12]). Let f (x) be a real valued function on set Aq and 0 < q < 1. Define the
q-derivative of f (x) as

Dq f (x) =
dq f (x)

dqx
=

f (x)− f (qx)
(1− q)x

, x ∈ Aq \ {0}, (4)

Dq f (0) =
dq f (x)

dqx
|x=0 = lim

n→∞

f (xqn)− f (0)
xqn , x 6= 0.

On the basis of Definition 1, the high order q-derivative Dn
q f (x) is defined as

Dn
q f (x) = Dq(Dn−1

q f (x)), n ≥ 2.
For two real valued functions f (x) and g(x), by a straightforward computation,

we have

Dq(a f (x)± bg(x)) = aDq f (x)± bDqg(x), a, b ∈ R,

Dq( f (x)g(x)) = g(x)Dq f (x) + f (qx)Dqg(x),

Dq(
f (x)
g(x)

) =
g(x)Dq f (x)− f (x)Dqg(x)

g(x)g(qx)
, g(x) 6= 0, g(qx) 6= 0.

Definition 2 ( [33]). Let f (x) be a real valued function defined on set Aq. The q-integral of f (x)
is defined by ∫ x

0
f (s)dqs = (1− q)

∞

∑
n=0

xqn f (xqn), x ∈ Aq, (5)

∫ b

a
f (s)dqs =

∫ b

0
f (s)dqs−

∫ a

0
f (s)dqs, a, b ∈ Aq. (6)

From Definition 2, it is easy to see that

|
∫ b

0
f (s)dqs| ≤

∫ b

0
| f (s)|dqs, b > 0, (7)

∫ b

a
f (s)dqs =

∫ c

a
f (s)dqs +

∫ b

c
f (s)dqs, a < c < b. (8)
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The lemma below gives the operation of q-integration by parts.

Lemma 1 ([31]). Suppose f (x) and g(x) are two real valued functions defined on set Aq, 0 < q <
1, 0 ≤ a < b, a, b ∈ Aq, we have

∫ b

a
g(qx)Dq f (x)dqx = ( f g)(b)− ( f g)(a)−

∫ b

a
f (x)Dqg(x)dqx. (9)

Introduce the q-Beta function

Bq(x, y) =
∫ 1

0
sx−1(1− qs)(y−1)

q dqs, (10)

where x, y ∈ C, Re(x) > 0 and Re(y) > 0. The q-Gamma and q-Beta functions have the
following relation: [14]

Bq(x, y) =
Γq(x)Γq(y)
Γq(x + y)

.

In the following, the concept of q-fractional calculus will be introduced.

Definition 3 ([34]). Suppose x ∈ Aq, a ≥ 0 and α 6= −1,−2, . . . The α-order Riemann–Liouville
q-fractional integral is defined formally by I0

q,a f (x) = f (x) and

Iα
q,a f (x) =

1
Γq(α)

∫ x

a
(x− qs)(α−1)

q f (s)dqs. (11)

Definition 4 ([35]). Suppose a ∈ Aq, a ≥ 0 and n = dαe. The α-order Caputo q-fractional
derivative of function f (x) : (a, ∞)→ R is defined as

cDα
q,a f (x) =

{
I−α
q,a f (x), α ≤ 0,

In−α
q,a Dn

q f (x), α > 0,
(12)

where dαe represents the smallest integer which is equal to or greater than α.

For briefness, we use Iα
q f (x) instead of Iα

q,0 f (x) and cDα
q f (x) instead of cDα

q,0 f (x),
respectively.

3. The Difference Method and Truncation Error Estimation

In this section, we investigate a difference method to solve a boundary value problem
of Caputo type q-fractional differential equations and give the truncation error boundness.

Consider the following problem:{
−cDα

q u(x) + a(x)u(x) = f (x), 0 < x ≤ b, x ∈ Tq,b, 0 < q < 1,
Dqu(0) = γ1, u(b) = γ2, 1 < α < 2,

(13)

where a(x) ≥ 0. The difference method will be established on a discrete points set {xk} ⊂
Tq,b, where Tq,b = {bqn : n = 0, 1, . . .} ∪ {0} is a q-geometric set.

We first discretize the Caputo q-fractional derivative

cDα
q u(x) =

1
Γq(2− α)

∫ x

0
(x− qs)(1−α)

q D2
qu(s)dqs. (14)
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Let 0 = x0 < x1 < . . . < xN = b be a partition of [0, b] with the point xk = bqN−k ∈
Tq,b. Denote the mesh size 4xk = xk − xk−1, 1 ≤ k ≤ N, N ≥ 1 is a positive integer. At
point xn, using D2

qu(xk) to replace D2
qu(x) on interval [xk−1, xk], we have from (14) that

cDα
q u(xn) =

1
Γq(2− α)

n

∑
k=1

∫ xk

xk−1

(xn − qs)(1−α)
q D2

qu(s)dqs

=
1

Γq(2− α)

n

∑
k=1

∫ xk

xk−1

(xn − qs)(1−α)
q D2

qu(xk)dqs + Rn
1 , (15)

where

Rn
1 =

1
Γq(2− α)

n

∑
k=1

∫ xk

xk−1

(xn − qs)(1−α)
q (D2

qu(s)− D2
qu(xk))dqs. (16)

Denoting v(x) = Dqu(x), we have

D2
qu(x)− D2

qu(xk) = Dqv(x)− Dqv(xk) = Dqv(x)− v(xk)− v(xk−1)

∆xk
. (17)

Let L1,kv(s) be the piecewise linear interpolation of v(s)

L1,kv(s) =
xk − s
4xk

v(xk−1) +
s− xk−1
4xk

v(xk), s ∈ [xk−1, xk], k = 1, 2, . . . , N. (18)

The corresponding interpolation error is

Rk(s) = v(s)− L1,kv(s), Rk(xk−1) = Rk(xk) = 0, s ∈ [xk−1, xk]. (19)

Noting that DqL1,kv(s) = (v(xk)− v(xk−1))/4xk, we have from (16), (17) and (19) that

Rn
1 =

1
Γq(2− α)

n

∑
k=1

∫ xk

xk−1

(xn − qs)(1−α)
q DqRk(s)dqs. (20)

Now, using the identity

n

∑
k=1

dk(xk − xk−1) = dnxn +
n−1

∑
k=1

(dk − dk+1)xk − d1x0,

we obtain from (15) that (denote Γα
q = Γq(2− α))

cDα
q u(xn) =

1
Γα

q

n

∑
k=1

b(n)k (v(xk)− v(xk−1)) + Rn
1

=
1

Γα
q
[b(n)n v(xn)−

n−1

∑
k=1

(b(n)k+1 − b(n)k )v(xk)− b(n)1 v(x0)] + Rn
1

=
1

Γα
q
[b(n)n v(xn)−

n−1

∑
k=1

b(n)k+1 − b(n)k
4xk

(u(xk)− u(xk−1))− b(n)1 γ1] + Rn
1

=
1

Γα
q
[b(n)n

u(xn)− u(xn−1)

4xn
−

n−1

∑
k=1

ck(u(xk)− u(xk−1))− b(n)1 γ1] + Rn
1 , (21)

where the coefficient

b(n)k =
1
4xk

∫ xk

xk−1

(xn − qs)(1−α)
q dqs, ck = (b(n)k+1 − b(n)k )/4xk. (22)
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Next, to enhance the stability, we further discrete the term a(xn)u(xn) in Equation (13).
From (4), we have

u(xn) = u(xn−1) +4xnDqu(xn)

= u(xn−1) +4xnDqu(xn−1) +4x2
nD2

qu(xn)

= u(xn−1) +4xn
u(xn−1)− u(xn−2)

4xn−1
+4x2

nD2
qu(xn).

Then, (notice that4xn/4xn−1 = 1
q )

a(xn)u(xn) =

{
a(x1)u(x0) + a(x1)4x1Dqu(x0) + Rn

2 , n = 1,
a(xn)u(xn−1) + a(xn)[u(xn−1)− u(xn−2)]/q + Rn

2 , n ≥ 2,
(23)

where the error Rn
2 = a(xn)4x2

nD2
qu(xn). Thus, with (21) and (23) we obtain the difference

discrete scheme of Problem (13)

−4α
q u(xn) = f (xn)− Rn, Rn = Rn

1 + Rn
2 , n = 1, 2, · · ·, N, (24)

with the boundary value conditions: Dqu(0) = γ1, u(xN) = γ2, where the difference operator

−4α
q u(x1) =

1
Γα

q
(

b(n)1
4x1

u(x0)−
b(n)1
4x1

u(x1) + b(n)1 γ1) + a(x1)u(x0) +4x1a(x1)γ1, n = 1, (25)

−4α
q u(xn) =

1
Γα

q
{−c1u(x0)−

n−2

∑
k=1

(ck+1 − ck)u(xk) +
1
q

Γα
q a(xn)u(xn−2)+

+ [
b(n)n
4xn

+ cn−1 − (1 +
1
q
)Γα

q a(xn)]u(xn−1)−
b(n)n
4xn

u(xn) + b(n)1 γ1}, 2 ≤ n ≤ N − 1, (26)

−4α
q u(xN) =

1
Γα

q
{−c1u(x0)−

N−2

∑
k=1

(ck+1 − ck)u(xk) +
1
q

Γα
q a(xN)u(xN−2)+

+ [
b(N)

N
4xN

+ cN−1 − (1 +
1
q
)Γα

q a(xN)]u(xN−1)−
b(N)

N
4xN

γ2 + b(N)
1 γ1}, n = N. (27)

Now, we define the difference approximation of Problem (13) by

−4α
q un = fn, n = 1, 2, · · ·, N, (28)

where fn = f (xn). The truncation error of Formula (28) is Rn = Rn
1 + Rn

2 .
In the following, we estimate the truncation error Rn.

Lemma 2 ([31]). Suppose that v(x) is twice q-differentiable on [xk−1, xk]. Then, the error function
Rk(x) of linear interpolation can be expressed as follows

Rk(x) =
1

1 + q
D2

qv(ξk)(x− xk)(x− xk−1), x ∈ [xk−1, xk], ξk ∈ (xk−1, xk), 1 ≤ k ≤ N. (29)

Lemma 3. Suppose 0 < q < 1, 1 < α < 2 and Dq is the q-derivative operator of variable s.
We have

Dq(x− s)(1−α)
q = −[1− α]q(x− qs)(−α)

q , (30)

|(x− qs)(−α)
q | ≤ x−α 1

1− qα−1
1

1− q2−α
. (31)
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Proof. With (4) and (2), we obtain

Dq(x− s)(1−α)
q =

(x− s)(1−α)
q − (x− qs)(1−α)

q

(1− q)s

=
x1−α

(q− 1)s
lim

m→∞
Sm, (32)

where

Sm =
m

∏
i=0

x− qi+1s
x− qi+2−αs

−
m

∏
i=0

x− qis
x− qi+1−αs

.

Further,

Sm =
m

∏
i=1

x− qis
x− qi+1−αs

[
x− qm+1s

x− qm+2−αs
− x− s

x− q1−αs
]

=
m

∏
i=1

x− qis
x− qi+1−αs

[
sx(1− q1−α)(1− qm+1)

(x− qm+2−αs)(x− q1−αs)
]

=
m

∏
i=0

x− qi+1s
x− qi+1−αs

[
sx(1− q1−α)(1− qm+1)

(x− qm+2−αs)(x− qm+1s)
]

=
∞

∏
i=0

x− qi+1s
x− qi+1−αs

[
s(1− q1−α)

x
], m→ ∞.

Substituting this into (32), it yields

Dq(x− s)(1−α)
q =

x−α(1− q1−α)

q− 1

∞

∏
i=0

x− qi+1s
x− qi+1−αs

= −[1− α]q(x− qs)(−α)
q .

Next, we estimate (31). Since

(x− qs)(−α)
q = x(−α) lim

m→∞
S
′
m, S

′
m =

m

∏
i=0

x− qi+1s
x− qi+1−αs

, (33)

and
max

0≤s≤x
| x− qs
x− q1−αs

| = max{1, | 1− q
1− q1−α

|} ≤ 1− q
1− qα−1 ,

max
0≤s≤x

x− qi+1s
x− qi+1−αs

=
1− qi+1

1− qi+1−α
, i ≥ 1.

Then,

|S′m| ≤
1− q

1− qα−1

m

∏
i=1

1− qi+1

1− qi+1−α

= (1− qα−1)
−1

(1− q2−α)
−1 1− q

1− q3−α

1− q2

1− q4−α
· · · 1− qm−1

1− qm+1−α
(1− qm)(1− qm+1)

≤ (1− qα−1)
−1

(1− q2−α)
−1

.

Substituting the above inequality into (33), we complete the proof.

Below, we give the truncation error estimation.
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Theorem 1. Suppose u(x) and D3
qu(x) are continuous functions on [0, b]. Then, the following

estimate of the truncation error function of the difference Equation (28) holds:

|Rn| ≤ [
1

4Γq(2− α)

1
qα−1 − q

1
1− q2 x1−α

n + a(xn)]4x2
n max

0≤x≤xn
|D3

qu(x)|. (34)

Proof. Denote R̃(s) = Rk(s), s ∈ [xk−1, xk], 1 ≤ k ≤ N. We have from (20), (9) (19) and
Lemma 3 that

Rn
1 =

1
Γα

q

n

∑
k=1

∫ xk

xk−1

(xn − qs)(1−α)
q DqRk(s)dqs

=
n

∑
k=1

(xn − qs)(1−α)
q

Γα
q

Rk(s)|
xk
xk−1 −

1
Γα

q

n

∑
k=1

∫ xk

xk−1

Dq(xn − s)(1−α)
q Rk(s)dqs

=
[1− α]q

Γα
q

∫ xn

0
(xn − qs)(−α)

q R̃(s)dqs.

With (7), (8), Lemma 2 and Inequality (31), we have

|Rn
1 | ≤

|[1− α]q|
Γα

q

∫ xn

0
|(xn − qs)(−α)

q R̃(s)|dqs

=
|[1− α]q|

Γα
q

n

∑
k=1

∫ xk

xk−1

|(xn − qs)(−α)
q Rk(s)|dqs

≤
|[1− α]q|

Γα
q

1
1 + q

1
4

max
1≤k≤n

|4xk|2 max
0≤x≤xn

|D2
qv(x)|

∫ xn

0
|(xn − qs)(−α)

q |dqs

≤
|[1− α]q|

Γα
q

1
1 + q

1
4

max
1≤k≤n

|4xk|2 max
0≤x≤xn

|D2
qv(x)|x1−α

n
1

1− qα−1
1

1− q2−α

=
1

4Γα
q

1
1− q2

1
qα−1 − q

x1−α
n 4x2

n max
0≤x≤xn

|D3
qu(x)|.

From (23) and Rn = Rn
1 + Rn

2 , the proof is completed.

4. The Stability and the Error Analysis

In this section, we study the stability of the difference formula in (28) and give the
error estimation of u(xn)− un.

Lemma 4. Suppose 0 < q < 1, 1 < α < 2 and 0 ≤ s ≤ xn, then the following property holds:

x1−α
n < (xn − qi+1s)(1−α)

q ≤ (xn − qs)(1−α)
q , i ≥ 0. (35)

Proof. For the left-hand inequality, we have

(xn − qi+1s)(1−α)
q = x1−α

n

∞

∏
j=0

xn − qi+j+1s
xn − qi+j+2−αs

> x1−α
n , 0 ≤ s ≤ xn, i ≥ 0.

For the right-hand inequality, when i ≥ 1 (it is obvious for i = 0) we have

(xn − qi+1s)(1−α)
q − (xn − qs)(1−α)

q

= x1−α
n

∞

∏
j=0

xn − qi+j+1s
xn − qi+j+2−αs

− x1−α
n

∞

∏
j=0

xn − qj+1s
xn − qj+2−αs

= x1−α
n

∞

∏
j=i

xn − qj+1s
xn − qj+2−αs

(1−
i−1

∏
j=0

xn − qj+1s
xn − qj+2−αs

) < 0,
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which completes the proof.

Lemma 5. The coefficient series b(n)k defined by (22) have the following properties

x(1−α)
n < b(n)1 < (xn − qx1)

(1−α)
q , (36)

b(n)k = (xn − qxk)
(1−α)
q , k = 2, · · ·, n, 2 ≤ n ≤ N. (37)

Proof. From Lemma 4, we obtain

b(n)1 =
1
4x1

∫ x1

x0

(xn − qs)(1−α)
q dqs

=
x1

4x1
(1− q)

∞

∑
i=0

qi(xn − qi+1x1)
(1−α)
q ,

x1−α
n = x1−α

n (1− q)
∞

∑
i=0

qi < b(n)1 < (xn − qx1)
(1−α)
q (1− q)

∞

∑
i=0

qi = (xn − qx1)
(1−α)
q .

This gives (36). Since xk−1 = qxk,4xk = xk − xk−1 = xk(1− q), k ≥ 2, by (22) we have

b(n)k =
1
4xk

∫ xk

xk−1

(xn − qs)(1−α)
q dqs

=
1
4xk

∫ xk

0
(xn − qs)(1−α)

q dqs− 1
4xk

∫ xk−1

0
(xn − qs)(1−α)

q dqs

=
1
4xk

(1− q)
∞

∑
i=0

xkqi(xn − qi+1xk)
(1−α)
q − 1

4xk
(1− q)

∞

∑
i=0

xk−1qi(xn − qi+1xk−1)
(1−α)
q

=
∞

∑
i=0

qi(xn − qi+1xk)
(1−α)
q −

∞

∑
i=0

qi+1(xn − qi+2xk)
(1−α)
q = (xn − qxk)

(1−α)
q .

This gives (37).

Lemma 6. The coefficient series ck = (b(n)k+1 − b(n)k )/4xk satisfy the following inequality:

0 < c1 < c2 < · · · < cn−1, 2 ≤ n ≤ N. (38)

Proof. From (36) and (2), we have

c1 =
b(n)2 − b(n)1
4x1

>
1
4x1

[(xn − qx2)
(1−α)
q − (xn − qx1)

(1−α)
q ]

=
1
4x1

[(xn − qx2)
(1−α)
q − (xn − q2x2)

(1−α)
q ]

=
1
4x1

[x1−α
n

∞

∏
i=0

xn − qi+1x2

xn − qi+2−αx2
− x1−α

n

∞

∏
i=0

xn − qi+2x2

xn − qi+3−αx2
]

=
x1−α

n
4x1

∞

∏
i=1

xn − qi+1x2

xn − qi+2−αx2
(

xn − qx2

xn − q2−αx2
− 1)

=
x1−α

n
4x1

qx2(q1−α − 1)
xn − q2−αx2

∞

∏
i=1

xn − qi+1x2

xn − qi+2−αx2
> 0.
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Next, since

b(n)k+1 − b(n)k = (xn − qxk+1)
(1−α)
q − (xn − qxk)

(1−α)
q

= x1−α
n

∞

∏
i=0

xn − qi+1xk+1

xn − qi+2−αxk+1
− x1−α

n

∞

∏
i=0

xn − qi+2xk+1

xn − qi+3−αxk+1

= x1−α
n

∞

∏
i=1

xn − qi+1xk+1

xn − qi+2−αxk+1
[

xn − qxk+1

xn − q2−αxk+1
− 1],

so

ck − ck−1 =
(b(n)k+1 − b(n)k )

4xk
−

(b(n)k − b(n)k−1)

4xk−1

=
x1−α

n
4xk

∞

∏
i=1

xn − qi+1xk+1

xn − qi+2−αxk+1
[

xn − qxk+1

xn − q2−αxk+1
− 1]−

− x1−α
n

q4xk

∞

∏
i=1

xn − qi+2xk+1

xn − qi+3−αxk+1
[

xn − q2xk+1

xn − q3−αxk+1
− 1]

=
x1−α

n
4xk

∞

∏
i=2

xn − qi+1xk+1

xn − qi+2−αxk+1
{ xn − q2xk+1

xn − q3−αxk+1
[

xn − qxk+1

xn − q2−αxk+1
− 1]−

− 1
q
[

xn − q2xk+1

xn − q3−αxk+1
− 1]}

≥ x1−α
n
4xk

{[ xn − qxk+1

xn − q2−αxk+1
− 1]− 1

q
[

xn − q2xk+1

xn − q3−αxk+1
− 1]}

=
x1−α

n
4xk

{[ 1− qs
1− q2−αs

− 1]− 1
q
[

1− q2s
1− q3−αs

− 1]},

where s = xk+1
xn

, 0 < s ≤ 1. Let f (s) = 1−qs
1−q2−αs − 1− 1

q
1−q2s

1−q3−αs +
1
q . Then,

f
′
(s) = (q2−α − q)[

1
(1− q2−αs)2 −

1
(1− q3−αs)2 ] > 0.

Since f (0) = 0, then f (s) > 0, that is, ck − ck−1 > 0, k = 2, 3, · · ·, N − 1.

According to (25)–(27), we write the difference equations of System (28) as follows:

[
b(n)1
4x1

+ Γα
q a(x1)]u0 −

b(n)1
4x1

u1 = Γα
q f1 − Γα

q4x1a(x1)γ1 − b(n)1 γ1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−c1u0 − (c2 − c1)u1 − · · · − [ci − ci−1 +

1
q Γα

q a(xi+1)]ui−1

+[
b(n)i+1
4xi+1

+ ci + (1 + 1
q )Γ

α
q a(xi+1)]ui −

b(n)i+1
4xi+1

ui+1 = Γα
q fi+1 − b(n)1 γ1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−c1u0 − (c2 − c1)u1 − (c3 − c2)u2 − · · · − [cN−1 − cN−2 +

1
q Γα

q a(xN)]uN−2

+[
b(N)

N
4xN

+ cN−1 + (1 + 1
q )Γ

α
q a(xN)]uN−1 = Γα

q fN − b(N)
1 γ1 +

b(N)
N
4xN

γ2,

(39)

where fi = f (xi), 1 ≤ i ≤ N.

Theorem 2. The solution of difference equation in (28) exists uniquely.
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Proof. Let A be the coefficient matrix of equations of System (28) with elements aij (i, j =

0, 1, · · ·, N − 1) given in (39). Since b(n)k > 0, ck+1 > ck > 0, a(x) ≥ 0, we have

N−1

∑
j=0
|a0j| =

b(n)1
4x1

≤ a00 =
b(n)1
4x1

+ Γα
q a(x1),

N−1

∑
j=0,j 6=i

|aij| = ci +
1
q

Γα
q a(xi+1) +

b(n)i+1
4xi+1

≤ aii = ci + (1 +
1
q
)Γα

q a(xi+1) +
b(n)i+1
4xi+1

, i = 1, 2, · · ·, N − 2,

N−2

∑
j=0
|aN−1,j| = cN−1 +

1
q

Γα
q a(xN) < aN−1,N−1

= cN−1 + (1 +
1
q
)Γα

q a(xN) +
b(N)

N
4xN

.

Therefore, A is diagonally dominant and irreducible (noting that aij 6= 0, j = i− 1, i, i + 1)
which implies that A is a invertible matrix [36]. The proof is completed.

In the following, we give the stability analysis of the difference formula.

Theorem 3. Let a(x) ≥ a0 > 0. Then, the following stability estimation for the solution of the
difference equation in (28) holds:

|un| ≤
1
a0

max
1≤k≤N

| f (xk)|+ (
1

Γq(2− α)a0
b(n)1 + x1)|γ1|+ |γ2|, n ≥ 1. (40)

Proof. Suppose |ui| = max
0≤j≤N−1

|uj|. From (39), we can see that when i = 0,

[
b(n)1
4x1

+ Γα
q a(x1)]|u0| ≤

b(n)1
4x1
|u1|+ Γα

q | f1|+ Γα
q4x1a(x1)|γ1|+ b(n)1 |γ1|,

so,

|u0| ≤
1

a(x1)
[| f1|+4x1a(x1)]|γ1|+

1
Γα

q a(x1)
b(n)1 |γ1|

≤ 1
a0
| f1|+ (

1
Γα

q a0
b(n)1 +4x1)|γ1|.

When i = N − 1, from (39) we have

[
b(N)

N
4xN

+ Γα
q a(xN)]|uN−1| ≤ Γα

q | fN |+
b(N)

N
4xN

|γ2|+ b(N)
1 |γ1|,

|uN−1| ≤
1

b(N)
N
4xN

+ Γα
q a(xN)

[Γα
q | fN |+

b(N)
N
4xN

|γ2|+ b(N)
1 |γ1|]

≤ 1
a0
| fN |+

1
Γα

q a0
b(N)

1 |γ1|+ |γ2|.

When 1 ≤ i ≤ N − 2, we have
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[ci +
b(n)i+1
4xi+1

+ (1 +
1
q
)Γα

q a(xi+1)]|ui|

≤ [c1 + (c2 − c1) + · · ·+ (ci − ci−1) +
1
q

Γα
q a(xi+1) +

b(n)i+1
4xi+1

] max
1≤j≤N−2

|uj|+ Γα
q | fi|+ b(n)1 |γ1|.

Therefore,

|ui| ≤
1

a(xi+1)
| fi|+

1
Γα

q a(xi+1)
b(n)1 |γ1| ≤

1
a0
| fi|+

1
Γα

q a0
b(n)1 |γ1|.

Through the three cases of discussion above and noting 4x1 = x1 − x0 = x1, the proof
is completed.

Finally, the error estimation is given in the following theorem.

Theorem 4. Let u(x) and un be the solutions of Equations (13) and (28), respectively. Suppose that
u(x) and D3

qu(x) are both continuous functions on [0, b]. Then, the following error estimation holds:

|u(xn)− un| ≤
1
a0
[

1
4Γq(2− α)

1
q2 − 1

1
q− qα−1 x1−α

n + a(xn)]4x2
n max

0≤x≤xn
|D3

qu(x)|. (41)

Proof. Let error function en = un − u(xn). From (24) and (28), we see that en satisfies the
difference equation: −4α

q en = Rn with γ1 = γ2 = 0. Thus, we completed the proof by
using Theorems 1 and 3.

5. Numerical Experiment

This section provides two numerical examples to illustrate the effectiveness of the
proposed difference formula. The experiments are carried out by using Matlab R2109a.

Example 1. In this experiment, we solve the following q-fractional differential equation using the
difference method (28)−cD11/10

q u(x) + (x + 2)u(x) = (1−q2)x2−α

1−q2−αΓq(2−α)
+ (x2 − 1)(x + 2),

Dqu(0) = 0, u(1) = 0, 0 < x ≤ 1, x ∈ Tq,b.
(42)

The exact solution is u(x) = x2 − 1. The experiment results are shown in Table 1.

Table 1. Experiment results of problem (42), q = 3/5, N = 10.

xn = qN−n u(xn) un |u(xn)− un|
0.0000 −1.0000 −1.0201 0.0201
(3/5)9 −0.9999 −1.0204 0.0205
(3/5)8 −0.9997 −1.0206 0.0209
(3/5)7 −0.9992 −1.0207 0.0214
(3/5)6 −0.9978 −1.0201 0.0222
(3/5)5 −0.9940 −1.0172 0.0232
(3/5)4 −0.9832 −1.0071 0.0239
(3/5)3 −0.9533 −0.9757 0.0224
(3/5)2 −0.8704 −0.8844 0.0140
(3/5)1 −0.6400 −0.6317 0.0083
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Example 2. In this experiment, we solve the following q-fractional differential equation using the
difference method (28)−cD13/10

q u(x) + 4cosxu(x) = (1−q2)x2−α

1−q2−αΓq(2−α)
+ 4cosx(x2 + x− 1),

Dqu(0) = 1, u(1) = 1, 0 < x ≤ 1, x ∈ Tq,b.
(43)

The exact solution is u(x) = x2 + x− 1. The experiment results are shown in Table 2.

Table 2. Experiment results of problem (43), q = 1/2, N = 10.

xn = qN−n u(xn) un |u(xn)− un|
0.0000 −1.0000 −1.0097 0.0097
(1/2)9 −0.9980 −1.0078 0.0097
(1/2)8 −0.9961 −1.0058 0.0097
(1/2)7 −0.9921 −1.0019 0.0098
(1/2)6 −0.9841 −0.9940 0.0098
(1/2)5 −0.9678 −0.9777 0.0099
(1/2)4 −0.9336 −0.9433 0.0097
(1/2)3 −0.8594 −0.8677 0.0083
(1/2)2 −0.6875 −0.6896 0.0021
(1/2)1 −0.2500 −0.2379 0.0121

6. Conclusions

We consider how to solve a Caputo type q-fractional boundary value problem where
the order of fractional derivative is 1 < α < 2. Based on the numerical quadrature and
q-Taylor expansion, we discretize the q-fractional equation and derive the truncation error
boundness. The unique existence and the stability of the numerical solution are also proved.
Finally, we obtain the error estimation and the validity of the theoretical analysis is verified
by numerical experiments.
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