Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 7, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–97. [Google Scholar]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard-Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
- Kórus, P. An extension of the Hermite-Hadamard inequality for convex and s-convex functions. Aequ. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Abramovich, S.; Persson, L.E. Fejér and Hermite-Hadamard type inequalities for N-quasi-convex functions. Math. Notes 2017, 102, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Delavar, M.R.; De La Sen, M. A mapping associated to h-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal. 2020, 14, 329–335. [Google Scholar] [CrossRef]
- Kadakal, H.; Bekar, K. New inequalities for AH-convex functions using beta and hypergeometric functions. Poincare J. Anal. Appl. 2019, 2, 105–114. [Google Scholar] [CrossRef]
- İşcan, İ. Weighted Hermite–Hadamard–Mercer type inequalities for convex functions. Numer. Methods Part. Difer. Equ. 2021, 37, 118–130. [Google Scholar] [CrossRef]
- Marinescu, D.Ş.; Monea, M. A very short proof of the Hermite-Hadamard inequalities. Am. Math. Month. 2020, 127, 850–851. [Google Scholar] [CrossRef]
- Kadakal, M.; Karaca, H.; İşcan, İ. Hermite-Hadamard type inequalities for multiplicatively geometrically P-functions. Poincare J. Anal. Appl. 2018, 2, 77–85. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Du, T.S.; Awan, M.U.; Kashuri, A.; Zhao, S.S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity. Appl. Anal. 2021, 100, 642–662. [Google Scholar] [CrossRef]
- Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Turhan, S.; Karapinar, D. Improvement of fractional Hermite–Hadamard type inequality for convex functions. Miskolc. Math. Notes 2018, 19, 1007–1017. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Ed. 2012, 55, 9–15. [Google Scholar] [CrossRef]
- Snyder, J.M. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, D.; Debnath, A.K.; Pedrycz, W. A variable and a fxed ordering of intervals and their application in optimization with interval-valued functions. Int. J. Approx. Reason. 2020, 121, 187–205. [Google Scholar] [CrossRef]
- Singh, D.; Dar, B.A.; Kim, D.S. KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 2016, 254, 29–39. [Google Scholar] [CrossRef]
- Zhao, D.F.; An, T.Q.; Ye, G.J.; Torres, D.F.M. On Hermite–Hadamard type inequalities for harmonical h-convex interval-valued functions. Math. Inequal. Appl. 2020, 23, 95–105. [Google Scholar]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann-Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
- Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, F. Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Gözütok, U. On new inequalities of Hermite-Hadamard-Fejér type for harmonically convex functions via fractional integrals. SpringerPlus 2016, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wu, S. Fejér and Hermite-Hadamard type inequalities for harmonically convex functions. J. Appl. Math. 2014, 2014, 386806. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Iscan, I.; Yazici, N. Hermite-Hadamard type inequalities for product of harmonically convex functions via Riemann-Liouville fractional integrals. J. Math. Anal. 2016, 7, 74–82. [Google Scholar]
- Chen, F. A note on Hermite-Hadamard inequalities for Products of convex functions. J. Appl. Math. 2013, 935020, 1–5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. https://doi.org/10.3390/fractalfract6040178
Khan MB, Macías-Díaz JE, Treanțǎ S, Soliman MS, Zaini HG. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal and Fractional. 2022; 6(4):178. https://doi.org/10.3390/fractalfract6040178
Chicago/Turabian StyleKhan, Muhammad Bilal, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohammed S. Soliman, and Hatim Ghazi Zaini. 2022. "Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings" Fractal and Fractional 6, no. 4: 178. https://doi.org/10.3390/fractalfract6040178
APA StyleKhan, M. B., Macías-Díaz, J. E., Treanțǎ, S., Soliman, M. S., & Zaini, H. G. (2022). Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal and Fractional, 6(4), 178. https://doi.org/10.3390/fractalfract6040178