On the Existence and Stability of Variable Order Caputo Type Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Existence, Uniqueness, and Continuation Theorems
4. Global Solution
5. Ulam Stability Results
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef] [Green Version]
- Li, C.P.; Zeng, F.H. Numerical Methods for Fractional Differential Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Li, C.P.; Cai, M. Theory and Numerical Approximations of Fractional Integrals and Derivatives; SIAM: Philadelphia, PA, USA, 2019. [Google Scholar]
- Samko, S.G.; Ross, B. Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, C.F.M. Mechanics with variable-order differential operators. Ann. Phys. 2003, 12, 692–703. [Google Scholar] [CrossRef]
- Diaz, G.; Coimbra, C.F.M. Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynam. 2009, 56, 145–157. [Google Scholar] [CrossRef]
- Ingman, D.; Suzdalnitsky, J.; Zeifman, M. Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech. 2000, 67, 383–390. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef] [Green Version]
- Kou, C.; Zhou, H.; Li, C.P. Existence and continuation theorems of fractional Riemann–Liouville type fractional differential equations. Int. J. Bifurcat Chaos 2011, 22, 1250077. [Google Scholar] [CrossRef]
- Li, C.P.; Sarwar, S. Existence and continuation of solutions for Caputo type fractional differential equations. Electron. J. Differ. Equ. 2016, 207, 1–14. [Google Scholar]
- Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J.J. Fractional order differential equations on an unbounded domain. Nonlin. Anal. TMA 2010, 72, 580–586. [Google Scholar] [CrossRef]
- Baleanu, D.; Mustafa, O.G.; Agarwal, R.P. An existence result for a superlinear fractional differential equation. Appl. Math. Lett. 2010, 23, 1129–1132. [Google Scholar] [CrossRef] [Green Version]
- Razminiaa, A.; Dizajib, A.F.; Majda, V.J. Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model. 2012, 55, 1106–1117. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z. Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations. J. Appl. Math. Comput. 2013, 43, 295–306. [Google Scholar] [CrossRef]
- Jiang, J.; Guirao, J.L.G.; Saeed, T. The existence of the extremal solution for the boundary value problems of variable fractional order differential equation with causal operator. Fractals 2020, 28, 2040025. [Google Scholar] [CrossRef]
- Gu, C.Y.; Zheng, F.X.; Shiri, B. Mittag–Leffler stability analysis of tempered fractaional neural networks with short memory and variable-order. Fractals 2021, 29, 2140029. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative Study on Solutions of a Hadamard Variable Order Boundary Problem via the Ulam–Hyers–Rassias Stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Han, C.; Chen, Y.; Liu, D.-Y.; Boutat, D. Numerical Analysis of Viscoelastic Rotating Beam with Variable Fractional Order Model Using Shifted Bernstein–Legendre Polynomial Collocation Algorithm. Fractal Fract. 2021, 5, 8. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y. Dynamic Analysis of the Viscoelastic Pipeline Conveying Fluid with an Improved Variable Fractional Order Model Based on Shifted Legendre Polynomials. Fractal Fract. 2019, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, Y.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.H.; Li, C.P.; Lu, J.H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 2007, 48, 409–416. [Google Scholar] [CrossRef]
- Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1940. [Google Scholar]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.P.; Sarwar, S. Linearization of Nonlinear Fractional Differential Systems with Riemann–Liouville and Hadamard Derivatives. Progr. Fract. Differ. Appl. 2020, 6, 11–22. [Google Scholar]
- Sarwar, S. Finite Part Integral Associated With Riesz and Hilfer Derivatives. Fractals 2019, 27, 1950078. [Google Scholar] [CrossRef]
- Henderson, J.; Quahab, A. Impulsive differential inculsions with fractional order. Comput. Math. Appl. 2010, 59, 1191–1226. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.P.; Gao, J.M.; Ding, Y.S. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, S. On the Existence and Stability of Variable Order Caputo Type Fractional Differential Equations. Fractal Fract. 2022, 6, 51. https://doi.org/10.3390/fractalfract6020051
Sarwar S. On the Existence and Stability of Variable Order Caputo Type Fractional Differential Equations. Fractal and Fractional. 2022; 6(2):51. https://doi.org/10.3390/fractalfract6020051
Chicago/Turabian StyleSarwar, Shahzad. 2022. "On the Existence and Stability of Variable Order Caputo Type Fractional Differential Equations" Fractal and Fractional 6, no. 2: 51. https://doi.org/10.3390/fractalfract6020051
APA StyleSarwar, S. (2022). On the Existence and Stability of Variable Order Caputo Type Fractional Differential Equations. Fractal and Fractional, 6(2), 51. https://doi.org/10.3390/fractalfract6020051