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Abstract: Viscoelastic pipeline conveying fluid is analyzed with an improved variable fractional
order model for researching its dynamic properties accurately in this study. After introducing the
improved model, an involuted variable fractional order, which is an unknown piecewise nonlinear
function for analytical solution, an equation is established as the governing equation for the dynamic
displacement of the viscoelastic pipeline. In order to solve this class of equations, a numerical method
based on shifted Legendre polynomials is presented for the first time. The method is effective and
accurate after the numerical example verifying. Numerical results show that how dynamic properties
are influenced by internal fluid velocity, force excitation, and variable fractional order through the
proposed method. More importantly, the numerical method has shown great potentials for dynamic
problems with the high precision model.

Keywords: improved model; shifted Legendre polynomial; viscoelastic pipeline conveying fluid;
variable fractional order equation; numerical solution; dynamic response

1. Introduction

Pipelines conveying fluid are of the significant structures in engineering and science fields,
and they are involved in projects of heat exchanger devices, nuclear industries, oil transportation,
cosmonautics, aviation, and hemodynamics. Due to the external load excitations, the internal fluid
flowing, and other factors, the dynamic properties of the pipeline change. These will bring an
uncertainty of the pipeline conveying fluid on engineering performance.

For the above reason, the dynamic analysis of infusion pipelines has always been the research
hot spot and focus on the field of engineering and science. Peng et al. [1] studied the pipeline with
inclined support to transport fluid. The dynamic analysis was carried out in the form of bifurcation
diagram and oscillation trajectory, and the influence of system parameters on the performance of the
system was studied. Chang and Sadeghi [2] studied cantilever pipes with and without end mass under
small amplitude excitation. The influence of force excitation with different velocities, amplitudes, and
frequencies on the pipeline was analyzed. He et al. [3] considered the elastic slender pipe and uniform
transverse flow that transported the fluid under the excitation of the top force. The results show that
the internal fluid velocity and external force play a key role in suppressing vortex-induced vibration.
Rahmati et al. [4] focused on how the flow rate affects the stability of the pipeline in which the fluid is
transported. However, most studies only focused on the influence of system parameters on stability.
Zhang et al. [5] analyzed the chaotic dynamics of the pipeline conveying pulsating fluid under external
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loads. It is worth noting that it is dangerous to induce chaotic vibration of the above pipes. Zhang
and Chen [6] studied the internal and external resonance dynamics of the pipeline conveying fluid
under the action of nonlinear force. Wang et al. [7] studied the effects of several physical and geometric
parameters on the dynamic characteristics of infusion pipelines by using bifurcation diagram and
phase diagram. Tang et al. [8] considered a free vibration of viscoelastic pipes conveying fluid by a
nonlinear fractional model and also investigated the effect of model parameters on the amplitudes and
frequencies of pipes. Although a lot of research results have been contributed, there are still difficult
problems in pipes conveying fluid aspects.

Several viscoelastic materials are widely used in fluid pipelines because of their damping and
simulation of biological tissue. Mitsotakis et al. [9] considered viscoelastic wall tubes with pulsating
flow, which is helpful to the simulation of hemodynamics. Yano et al. [10] studied viscoelastic materials
as damped pipes to reduce vibration. In addition, due to the accurate model of viscoelastic constitutive
relation, the dynamic analysis of viscoelastic pipelines has always been the key and a difficult problem
of the infusion pipeline.

In the early studies, the viscoelastic constitutive model was described by integer order differential
operators. Husain and Anderssen [11] considered Boltzmann model and Kohlrausch function to
simulate the relaxation modulus of linear viscoelasticity. Yan et al. [12] selected a Kelvin–Voigt model
to represent the character of viscoelastic interfaces. Machiraju et al. [13] used a generalized standard
linear solid model to describe the stress relaxation modulus of human subscapular tendons. With the
rapid development of fractional differential operators, fractional models are used in viscoelastic
constitutive relations. Compared with integer order differential operators, fractional order differential
operators can always better describe the memory properties of viscoelastic materials. The results
in [14] show that the fractional model can simulate the viscoelastic constitutive relation well, has higher
accuracy and less input parameters, and can adapt to the complex nonlinear viscoelastic behavior.
Therefore, the fractional model begins to be applied to the dynamics of viscoelastic fields. Four kinds
of fractional viscoelastic constitutive models were proposed in [15]. They are fractional Maxwell
model, fractional Kelvin–Voigt model, fractional Zener model, and fractional Poynting–Thomson
model, which are widely used to describe viscoelastic behavior. The fractional Zenner constitutive
model [16] was applied to sandwich cylindrical shells. The influence of system parameters on flutter
was analyzed. Yu et al. [17] used the generalized fractional model to describe the viscoelastic relaxation
characteristics of soft tissue. In addition, the model was also used to simulate the flow structure
interaction of patient-specific cerebral aneurysms. The results show that the fractional model can
effectively simulate the complex dynamic behavior of viscoelastic materials. However, in most cases,
the fractional model can not well describe the dynamic viscoelastic behavior. In the dynamic analysis,
the slight change of the parameters will cause the great change of the system. Under the condition
of large strain, the variable fractional order differential operator is better than the fractional order
differential operator to simulate the viscoelastic constitutive relation [18]. For the accurate modeling of
the viscoelastic constitution relation, a variable fractional order model was proposed. Meng et al. [19]
investigated the compression deformation of amorphous glassy polymers with the variable fractional
order model. The results demonstrated that the model has the advantages of higher accuracy and
fewer parameters.

However, there is little research on the variable fractional order model of viscoelastic pipes.
In order to improve the accuracy and efficiency of dynamic analysis, this study not only takes the
variable fractional order model as the constitutive model of viscoelastic infusion pipelines, but also
needs a reliable technique to accurately solve the variable fractional equation. Moreover, the governing
equation is a class of variable fractional order, which is a nonlinear piecewise function containing
analytic functions, differential equations. In recent years, researchers have studied numerical methods
for various fractional differential equations. Sene et al. [20] used a homotopy perturbation ρ-Laplace
transform method to study fractional diffusion and diffusion–reaction equations. Baleanu et al. [21]
solved the Helmholtz equation based on local fractional derivative operators. Malmir [22] applied a
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new fractional integration operational matrix of Chebyshev wavelets to solve fractional delay equations.
A Bernstein polynomial numerical method for solving a class of variable fractional order linear cable
equations [23] and variable order time fractional diffusion equations [24] was proposed. For nonlinear
fractional differential equations, a Legendre wavelet method was proposed to solve a class of nonlinear
fractional differential equations [25] with nonlinear variables. Chen et al. [26] studied the Bernstein
polynomials of a class of fractional differential equations with nonlinear variables by using the
polynomial method. However, there are few studies on the numerical solutions of variable fractional
order, which is nonlinear piecewise function containing analytic functions differential equations.

For these reasons, the variable fractional order model and a new method need to be applied to
these kinds of problems in order to improve the accuracy and diversity of the solutions. In order
to solve this problem numerically, an algorithm is proposed in this paper. The algorithm is not
only suitable for solving the governing equations of variable fractional order models with higher
accuracy, but also for the dynamic analysis of viscoelastic pipelines as a high precision technique. More
importantly, this study will improve the reliability of predicting viscoelastic behavior and dynamic
characteristics of flow pipeline.

The nonlinear dynamic analysis of viscoelastic pipeline under external load excitation is studied
in this paper. In the next section, the variable fractional order model is selected as the constitutive
model to derive the governing equation of the pipeline. In addition, it is a form of nonlinear differential
equations with variable fractional order which is a nonlinear piecewise function containing analytic
functions. In the third section, the Shift Legendre Polynomial algorithm is proposed to obtain the
numerical solution of the pipeline governing equation. In the fourth section, the effects of various
parameters on pipeline dynamics are studied. Finally, the fifth section gives the conclusion.

2. Mathematical Model

2.1. Mathematical Preliminaries

Here, several mathematical preliminaries on fractional order derivatives are introduced and they
are applied in the following sections.

Definition 1. The Caputo fractional derivative operator Dα(x,t) of order α(x, t) is defined as [22,26]

Dα(x,t) f (t) =
1

Γ(1− α(x, t))
∫ t

0+(t− τ)−α(x,t) f ′(τ)dτ, (1)

where t ≥ 0, 0 < α(x, t) ≤ 1, and α(x, t) is variable fractional order, f (t) is continuous over interval (0,+∞),
and is integrable over any subinterval of [0,+∞).

According to Definition 1, the variable fractional derivative of a polynomial can be expressed as

Dα(x,t)
t tn =


Γ(n + 1)

Γ(n + 1− α(x, t))
tn−α(x,t), n = 1, 2, · · ·

0, n = 0.

(2)

This property facilitates the algorithm proposed later.

2.2. Motion Equation of Viscoelastic Pipeline Conveying Fluid

A viscoelastic pipeline conveying fluid internal fluid, which is simply supported at both ends,
is considered in this section, as shown in Figure 1. The model applied in this research is composed of
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fluid and structure parts. Without considering internal damping and gravity effects, the governing
equation can be derived by constitutive model [18] and Hamilton’s principle and expressed as

EIθα ∂4+αw
∂x4∂tα

+ (m f V2
f − T0)

∂2w
∂x2 + 2m f Vf

∂2w
∂x∂t

+ (mp + m f )
∂2w
∂t2 = f , (3)

where E and θ are parameters of the constitutive model, I is the area moment of inertia, T0 is the
tensional force which is a constant, H is the length of the pipeline, mp and m f are respectively the
mass per unit length of the pipeline and internal fluid, Vf is the internal fluid velocity, f is the force
excitation per unit length, and w is the transverse displacement of pipeline.

w(x,t)

 x

f(x,t)

Figure 1. The geometric shape of viscoelastic pipeline.

The fractional order α is a constant at the time of small deformation and a linear function with
respect to strain at the time of large deformation. Under the force excitation, the strain of viscoelastic
pipeline is varying continuously between large deformation and small deformation. For accurately
describing the constitutive relationship of viscoelastic pipelines, the following variable fractional order
model, which is both suitable for small deformation and large deformation, is selected in this work.

α =

{
α0, ε ≤ αb,

α0 − αk(ε− αb), ε > αb,
(4)

where α is fractional order, which must satisfy 0 < α < 1, α0, αk and αb are parameters of α, and ε is
the strain of viscoelastic pipeline.

In addition, the strain can be formulated as

ε =
1
2
(

∂w
∂x

)2, (5)

where w is displacement of viscoelastic pipeline. Then, fractional order α can be written as

α =


α0,

1
2
(

∂w
∂x

)2 ≤ αb,

α0 − αk
[1

2
(

∂w
∂x

)2 − αb
]
,

1
2
(

∂w
∂x

)2 > αb.
(6)

It notes the fractional order is a constant when strain
1
2
(

∂w
∂x

)2 is less than or equal to a value αb

and a nonlinear function when
1
2
(

∂w
∂x

)2 is more than a value αb.
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Finally, the governing equation for the viscoelastic pipeline conveying fluid is formulated as

EIθα ∂4+αw
∂x4∂tα

+ (m f V2
f − T0)

∂2w
∂x2 + 2m f Vf

∂2w
∂x∂t

+ (mp + m f )
∂2w
∂t2 = f ,

α =


α0,

1
2
(

∂w
∂x

)2 ≤ αb,

α0 − αk
[1

2
(

∂w
∂x

)2 − αb
]
,

1
2
(

∂w
∂x

)2 > αb.

(7)

The boundary conditions are

ω(0, t) = 0, ω(H, t) = 0,
∂w(0, t)

∂x
= 0,

∂w(H, t)
∂x

= 0. (8)

3. Numerical Study

In this section, a numerical method is proposed to solve this class of variable fractional
equations on the basis of shifted Legendre polynomials. Then, the specific process is shown in
the following section.

3.1. Shifted Legendre Polynomials

Legendre polynomial is an orthogonal polynomial used to approximate analytical solution as
the basic function. However, the Legendre polynomial can’t satisfy the physical significance in many
engineering and science problems due to its definition range [−1, 1]. For overcoming this problem,
the shifted Legendre polynomial is introduced. The shifted Legendre polynomials of degree n in
[0, 1] [25] is defined as

LGn,i (x) =
n

∑
i=0

(−1)n+i Γ(n + i + 1)
Γ(n− i + 1)(Γ(i + 1))2 xi, (9)

where i = 0, 1, · · · , n, x ∈ [0, 1]. Then, a sequence Legendre polynomial matrix Φn(x) is formulated as

Φn(x) = [LGn,0(x), LGn,1(x), · · · , LGn,n(x)]T ,

Φn(x) = ATn(x),
(10)

where Tn(x) = [1, x, · · · , xn]T ,

A = [aij]
n
i,j=0, aij =


0, i < j,

(−1)i+j Γ(i + j + 1)
Γ(i− j + 1)(Γ(j + 1))2 , i ≥ j.

In order to expand the range of x, the shifted Legendre polynomial of degree n in [0, L] is
formulated as

LGLn,i (x) =
n
∑

i=0
(−1)n+i Γ(n + i + 1)

Γ(n− i + 1)(Γ(i + 1))2

( x
L
)i,

=
n
∑

i=0
(−1)n+i Γ(n + i + 1)

Γ(n− i + 1)(Γ(i + 1))2

( 1
L
)ixi,

(11)

where i = 0, 1, · · · , n, x ∈ [0, L]. Then, a sequence of shifted Legendre polynomials matrix ΦLn(x) is
formulated as

ΦLn(x) = ALTn(x), (12)
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where

L = [lij]ni,j=0, lij =

{
0, i 6= j,

L−i, i = j.

The shifted Legendre polynomial of degree n in [0, S] is formulated as

LGSn,i (t) =
n
∑

i=0
(−1)n+i Γ(n + i + 1)

Γ(n− i + 1)(Γ(i + 1))2

( t
S
)i,

=
n
∑

i=0
(−1)n+i Γ(n + i + 1)

Γ(n− i + 1)(Γ(i + 1))2

( 1
S
)iti,

(13)

where i = 0, 1, · · · , n, t ∈ [0, S]. Then, a sequence shifted Legendre polynomial matrix Φsn(t) is
defined as

Φsn(t) = AMTn(t), (14)

where

M = [mij]
n
i,j=0, mij =

{
0, i 6= j,

S−i, i = j.

3.2. Function Approximation

A continuous function W(x) in the domain [0, L] can be expanded in terms of shifted Legendre
polynomials as W(x) = lim

n→∞
∑n

i=0 ciLGLn,i (x), W(x) can be approximated as

W(x) ≈Wn(x) =
n

∑
i=0

ciLGLn,i (x) = CTΦLn(x), (15)

where CT = [c0, c1, · · · , cn] is an unknown coefficient matrix. Let

CT〈ΦLn(x), ΦT
Ln
(x)〉 = 〈u(x), ΦT

Ln
(x)〉. (16)

Then,
CT = 〈u(x), ΦLn(x)〉Q−1, (17)

where Q = 〈ΦLn , ΦT
Ln
(x)〉 = [δij]

n
i,j=0,

δij =
∫ L

0 Ln,i(x)Ln,j(x)dx =

0, i 6= j
L

i + j + 1
, i = j,

(i, j = 0, 1, · · · , n).

Similarly, a continuous function W(t) in the domain [0, S] can be expanded in terms of shifted
Legendre polynomials as W(t) = lim

n→∞
∑n

i=0 kiLGSn,i (t), W(t) can be approximated as

W(t) ≈Wn(t) =
n

∑
i=0

kiLGSn,i (t) = KTΦLn(t), (18)

where KT = [k0, k1, · · · , kn] is an unknown coefficient matrix. Let

KT〈ΦLn(t), ΦT
Ln
(t)〉 = 〈W(t), ΦT

Ln
(t)〉. (19)

Then,
KT = 〈W(t), ΦT

Ln
(t)〉R−1, (20)
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where R = 〈ΦLn(t), ΦT
Ln
(t)〉 = [∆ij]

n
i,j=0,

∆ij =
∫ S

0 LGSn,i (t)LGSn,j(t)dt =

0, i 6= j
S

i + j + 1
, i = j

(i, j = 0, 1, · · · , n).

Two-variable continuous function W(x, t) ∈ L2[0, H]× [0, S] can be formulated as

W(x, t) = lim
n→∞

n
∑

j=0
(

n
∑

i=0
ciLGLn,i (x))k jLGSn,j(t)

= lim
n→∞

n
∑

j=0

n
∑

i=0
cik jLGLn,i (x)LGSn,j(t)

= lim
n→∞

n
∑

j=0

n
∑

i=0
ΛijLGLn,i (x)LGSn,j(t)

= lim
n→∞

ΛT [ΦLn(x)⊗ΦSn(t)],

(21)

where Λ = [Λ00, Λ01, · · · , Λ0n, Λ10, Λ11, · · · , Λ1n, · · · , Λn0, Λn1, · · · , Λnn]T is an unknown coefficient
matrix, Λ = C⊗ K, and ⊗ is Kronecker product.

3.3. Differential Operator Matrix

ΦLn(x) is a sequence of polynomials matrix with respect to x, the derivative of ΦLn(x) with
respect to x is formulated as

dΦLn(x)
dx

= BxΦLn(x). (22)

Then,

BxΦLn(x) = Bx ALTn(x) = AL
dTn(x)

dx
= ALFTn(x) = ALF(AL)−1ΦLn(x), (23)

where F = [ fij]
n
i,j=0, fij =

{
0, i 6= j + 1,
i, i = j + 1.

From formula (23), one exponent th differential operator matrix with respect to x is obtained as

Bx = ALF(AL)−1. (24)

The m exponent th derivative of ΦLn(x) with respect to x is formulated as

dmΦLn(x)
dxm = BmxΦLn(x), m ∈ N. (25)

Then,

BmxΦLn(x) = Bmx ALTn(x) = AL
dmTn(x)

dxm

= ALFmTn(x) = ALFm(AL)−1ΦLn(x).

(26)

Based on formula (26), m exponent th differential operator matrix with respect to x can be given as

Bmx = ALFm(AL)−1. (27)

Similarly, ΦSn(t) is a sequence of polynomials matrix with respect to t, the derivative of ΦSn(t)
with respect to t is formulated as

dΦSn(t)
dt

= BtΦSn(t). (28)
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Then,

BtΦSn(t) = Bt AMTn(t) = AM
dTn(t)

dt

= AMFTn(t) = AMF(AM)−1ΦSn(t).

(29)

Therefore, from (29), one exponent th differential operator matrix with respect to t is obtained as

Bt = AMF(AM)−1. (30)

The v exponent th derivative of ΦSn(t) with respect to t is formulated as

dvΦSn(t)
dtv = BvtΦSn(t), v ∈ N. (31)

Then, we have

BvtΦSn(t) = Bvt AMTn(t) = AM
dvTn(t)

dtv

= AMFvTn(t) = AMFv(AM)−1ΦSn(t).

(32)

Based on Formula (32), v exponent th differential operator matrix with respect to x is obtained as

Bvt = AMFv(AM)−1. (33)

The α exponent th derivative of ΦSn(t) with respect to t is formulated as

dαΦSn

dtα
= BαtΦSn(t), α ∈ (0, 1), (34)

BαtΦSn(t) = Bαt AMTn(t) = AM
dαTn(t)

dtα

= AMGTn(t) = AMG(AM)−1ΦSn(t),

(35)

where G = [gij]
n
i,j=0, gij =

{
Γ(i+1)

Γ(i+1−α)
t−α, i = j, i ≥ 1,

0, otherwise.
Then, α exponent th differential operator

matrix with respect to t can be expressed as

Bαt = AMG(AM)−1. (36)

Thus,
∂m+vW(x, t)

∂xm∂tv ≈ ΛT[(BmxΦLn(x))⊗ (BvtΦSn(t))
]
, (37)

∂m+αW(x, t)
∂xm∂tα

≈ ΛT[(BmxΦLn(x))⊗ (BαtΦSn(t))
]
, (38)

where Λ is an unknown coefficient matrix.
Finally, the governing equation will be converted into the following algebraic equation:



EIθαΛT[(B4xΦLn(x))⊗ (BαtΦSn(t))
]
+ (m f V2

f − T0)ΛT[(B2xΦLn(x))⊗ΦSn(t)
]

+2m f Vf ΛT[(BxΦLn(x))⊗ (BtΦSn(t))
]
+ (mp + m f )ΛT[ΦLn(x)⊗ (BtΦSn(t))

]
= f ,

α =


α0,

1
2

[
ΛT[(B2xΦLn(x))⊗ΦSn(t)

]]2
≤ αb,

α0 − αk
{1

2

[
ΛT[(B2xΦLn(x))⊗ΦSn(t)

]]2
− αb

}
,

1
2

[
ΛT[(B2xΦLn(x))⊗ΦSn(t)

]]2
> αb.

(39)
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Discreting x and t, Λ is obtained. In addition, solution w(x, t) is obtained.

3.4. Numerical Example

Consider the following variable fractional equation:

2α ∂4+αw(x, t)
∂x4∂tα

+
∂2w(x, t)

∂x2 +
∂2w(x, t)

∂x∂t
+

∂2w(x, t)
∂t2 = q(x, t),

α =


0.56, (

∂w(x, t)
∂x

)2 ≤ 0.01,

0.56− 0.1
[
(

∂w(x, t)
∂x

)2 − 0.01
]
, (

∂w(x, t)
∂x

)2 > 0.01,

(40)

where

q(x, t) = 2α24
Γ(3)

Γ(3− α)
t2−α + (12x2 − 12x + 2)t2 + (8x3 − 12x2 + 4x)t + 2x2(1− x)2.

The exact solution w(x, t) can be expressed as

w(x, t) = x2(1− x)2t2, x ∈ [0, 1], t ∈ [0, 2]. (41)

The boundary conditions are

w(0, t) = w(1, t) =
∂w(0, t)

∂x
=

∂w(1, t)
∂x

= 0. (42)

The numerical solution wn(x, t) is obtained by the above method for n values 5. The absolute error
is written as ew(x, t) = |wn(x, t)−w(x, t)|, which is shown in Figure 2a. In addition, the comparison of
numerical solution wn(x, t) is shown in Figure 2c. As can be seen in Figure 2b, the range of ( ∂w(x,t)

∂x )2,
which determines fractional order α(x, t) is a constant or an unknown piecewise nonlinear function for
analytical solution, is [0,0.6], Then, α(x, t) is an unknown piecewise nonlinear function for analytical
solution and satisfies 0 < α(x, t) < 1. These indicate the numerical solution and exact solution are
highly consistent and the absolute error is less than 1.5× 10−12. Moreover, it is verified that the
proposed numerical method is accurately and effectively for solving variable fractional order, which is
an unknown piecewise nonlinear function for analytical solution, differential equations.

0
2

0.5

1

e w
(x

,t)

×10-12

1

t

1

x

1.5

0.5
0 0

(a)

0
2

0.2

1

(∂
w

(x
,t)

/∂
 x

)2

0.4

t

1

x

0.6

0.5
0 0

(b)

0 0.5 1 1.5 2
t

-0.1

0

0.1

0.2

0.3

w
(x

,t)

Exact solution
Numerical solution

(c)

Figure 2. The numerical example results when n values 4 for (a) absolute error ew(x, t), (b) (
∂w(x, t)

∂x
)2,

and (c) comparison of exact solution and numerical solution.
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4. Numerical Results and Analysis

Dynamic response of viscoelastic pipeline conveying fluid is analyzed in this section.
The ring-shaped pipeline is considered. The fixed parameters of viscoelastic pipeline and internal fluid
are shown in Table 1.

Table 1. The fixed parameters of viscoelastic pipeline and internal fluid.

Physical Quantity Symbol Value Dimension

External radius D 0.4 m
Internal radius d 0.32 m

Length H 2 m
Area moment of inertia I 0.0119 m4

Constitutive model parameter E 600 MPa
Constitutive model parameter θ 0.1 1
Density of viscoelastic pipeline ρp 1.2× 103 kg ·m−3

Density of internal fluid ρ f 1.05× 103 kg ·m−3

Mass per unit length of viscoelastic pipeline mp 217.2 kg ·m−1

Mass per unit length of internal fluid m f 168.84 kg ·m−1

Tensional force T0 500 N

The approximate solutions of the response for viscoelastic pipelines are shown in Figure 3a,b.
Here, viscoelastic pipeline is analyzed when Vf , f and α are considered as Vf = 10 m/s, f =

200 sin(500t)N/m and α =


0.65,

1
2
(

∂w
∂x

)2 ≤ 0.6,

0.65− 0.2
[1

2
(

∂w
∂x

)2 − 0.6
]
,

1
2
(

∂w
∂x

)2 > 0.6.
It can be seen that the

dynamic response is fluctuating with time increasing, and one peak and two troughs occur in the
middle of the pipeline. In addition, the displacement amplitude in the middle of the pipeline is the
largest. It can be concluded that response frequency is far less than the force excitation frequency.
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Figure 3. Dynamic response on the viscoelastic pipeline conveying fluid when n values 4 within 50 s
for (a) three-dimensional displacement map and (b) contour displacement map.

For investigating the effect of internal fluid velocity on response of pipeline, f and α are

considered as f = 100 sin(500t)N/m and α =


0.65,

1
2
(

∂w
∂x

)2 ≤ 0.6,

0.65− 0.2
[1

2
(

∂w
∂x

)2 − 0.6
]
,

1
2
(

∂w
∂x

)2 > 0.6.
As can

be seen from Figure 4a, the displacement response amplitude is nonlinearly decreasing with internal
fluid velocity linearly increasing from 6 m/s to 10 m/s. The response oscillation amplitude is increasing
firstly and then decreasing with internal fluid velocity increasing shown in Figure 4b. It can be
concluded that dynamic response amplitude is firstly decreasing and then nonlinearly increasing.
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Figure 4. Dynamic response with the fluid velocity varying when n values 4 and x values 1 m within
50 s for (a) displacement response of w(x, t) and (b) displacement oscillation of w(x, t).

In order to research the effect of the force excitation on the pipeline, Vf and α are considered as

Vf = 10 m/s and α =


0.65,

1
2
(

∂w
∂x

)2 ≤ 0.6,

0.65− 0.2
[1

2
(

∂w
∂x

)2 − 0.6
]
,

1
2
(

∂w
∂x

)2 > 0.6.
It can be seen intuitively from

Figure 5a,b that dynamic response amplitude is linearly increasing with the force excitation amplitude
increasing, and irregularly changing with the force excitation frequency increasing.
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Figure 5. Dynamic response with the force excitation varying when n values 4 and x values 1 m within
50 s for (a) excitation amplitude f0 and (b) excitation frequency ω.

For researching the impact of variable fractional order on viscoelastic pipeline, Vf and f are
considered as Vf = 10 m/s, f = 2000 sin(500t)N/m. As can be seen in Figure 6a,b, oscillation range is
varying with position x and nearly varying with α0 and αk. It can be concluded that changes in the
variable fractional order have almost no effect on the oscillation range of the viscoelastic pipeline.
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Figure 6. Oscillation response with the variable fractional order varying when n values 4 within 50 s
for (a) basic order α0 and (b) order varying rate αk.

5. Conclusions

As the research concerning with the variable fractional order model applied on fluid-solid
interaction is very little, dynamic properties for viscoelastic pipelines conveying fluid are studied in
this paper. A class of variable fractional order, which is an unknown piecewise nonlinear function
for analytical solution, equation is established as the more accurate governing equation than before
and solved by the proposed numerical method based on shifted Legendre polynomials for the first
time. After verifying, this algorithm is accurate and effective for solving these types of equations.
The research yields the following conclusions on the basis of numerical results obtained by the
numerical method:

(1) The dynamic response frequency of viscoelastic pipelines conveying fluid is far less than force
excitation frequency.

(2) As the fluid velocity is increasing, the dynamic response amplitude is firstly increasing and
then nonlinearly decreasing.

(3) The dynamic response amplitude of viscoelastic pipelines is linearly increasing with force
excitation amplitude increasing and irregularly changing with the force excitation frequency increasing.

(4) Changes in the variable fractional order have almost no effect on the oscillation range of
viscoelastic pipeline.
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