Mathematical Approach to Distant Correlations of Physical Observables and Its Fractal Generalisation
Abstract
:1. Introduction
The Characterization of -Metric
- 1.
- for every
- 2.
- for every ordered pairs
2. The Theoretical Experiment
3. Results and Discussion
3.1. The Distant Correlations and the EPR-Paradox
3.2. Fractal Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1953, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Popper, K. Zur Kritik der Ungenauigkeitsrelationen. Naturwiss 1934, 22, 807–808. [Google Scholar] [CrossRef]
- Fine, A. The Shaky Game: Einstein, Realism, and the Quantum Theory; The University of Chicago Press: Chicago, IL, USA, 1986. [Google Scholar]
- Hellman, G. EPR, Bell, and Collapse: A Route around Stochastic Hidden Variables. Phil. Sci. 1987, 54, 558–576. [Google Scholar] [CrossRef]
- Krips, H.P. Two paradoxes in quantum theory. Phil. Sci. 1969, 36, 145–152. [Google Scholar] [CrossRef]
- Krips, H.P. Measurement in Quantum Theory. In The Stanford Encyclopedia of Philosophy (Winter 1999 Edition); Zalta, E.N., Ed.; Stanford University: Stanford, CA, USA, 1999. [Google Scholar]
- Bohr, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 48, 696–702. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Schrodinger, E. Die gegenwartige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807–812, 823–828, 844–849. [Google Scholar] [CrossRef]
- Schrodinger, E. Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 1935, 31, 555–562. [Google Scholar] [CrossRef]
- Einstein, A. Physik und Realitat. J. Frankl. Inst. 1954, 221, 313–347. [Google Scholar] [CrossRef]
- Einstein, A. Quanten-Mechanik und Wirklichkeit. Dialectica 1948, 2, 320–324. [Google Scholar] [CrossRef]
- Finkelstein, D.R. Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Finkelstein, D.R. Quantum Sets and Clifford Algebras. Int. J. Theor. Phys. 1982, 21, 489–503. [Google Scholar] [CrossRef]
- Naschie, M.S. Chaos and fractals in nano and quantum technology. Chaos Soliton Fract. 1998, 9, 1793–1802. [Google Scholar]
- Naschie, M.S. Nanotechnology for the developing world. Chaos Soliton Fract. 2006, 30, 769–773. [Google Scholar] [CrossRef]
- Naschie, M.S. Elementary prerequisites for E-infinity. Chaos Soliton Fract. 2006, 30, 579–605. [Google Scholar] [CrossRef]
- Naschie, M.S. A review of E infinity theory and the mass spectrum of high energy particle physics. Chaos Soliton Fract. 2004, 19, 209–236. [Google Scholar] [CrossRef]
- Calcagni, G. Quantum field theory, gravity and cosmology in a fractal universe. J. High Energy Phys. 2010, 81, 104040. [Google Scholar] [CrossRef] [Green Version]
- Crnjac, L.M.; Naschie, M.E. Quantum gravity and dark energy using fractal Planck scaling. J. Mod. Phys. 2013, 4, 31–38. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Quantised Singularities in the Electromagnetic Field. Proc. Roy. Soc. A 1931, 133, 60–72. [Google Scholar]
- Kauffman, L.H.; Lomonaco, S.J. Entanglement criteria: Quantum and topological. Quantum Inf. Comput. 2003, 5105, 51–58. [Google Scholar]
- Bakke, K.; Carvalho, A.M.; Furtado, C.F. Influence of the topology in EPR correlations. J. Phys. A Math. Theor. 2008, 41, 065301. [Google Scholar] [CrossRef]
- Epperson, M.; Zafiris, E. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature. In Lexington Books; Rowman and Littlefield: New York, NY, USA, 2013. [Google Scholar]
- Engelking, R. General Topology; PWN: Warszawa, Poland, 1977. [Google Scholar]
- Bourbaki, N. Topologie General; Hermann: Paris, France, 1974. [Google Scholar]
- Kelly, J.C. Bitopological Spaces. Proc. London Math. Soc. 1963, 13, 71–89. [Google Scholar] [CrossRef]
- Ćirić, L.J. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Radenović, S.; Mirkov, N.; Paunović, L.J. Some new results on F-contractions in 0-complete partial metric spaces and 0-complete metric-like spaces. Fractal Fract. 2021, 5, 34. [Google Scholar] [CrossRef]
- Bohm, D. Quantum Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1951. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mogi, I.; Kamiko, M.; Okubo, S. Magnetic field effects on fractal morphology in electrochemical deposition. Phys. B Condens. Matter 1995, 211, 319–322. [Google Scholar] [CrossRef]
- Kempkes, S.N.; Slot, M.R.; Freeney, S.E.; Zevenhuizen, S.J.M.; Vanmaekelbergh, D.; Swart, I.; Smith, M.C. Design and characterization of electrons in a fractal geometry. Nat. Phys. 2019, 15, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Mitic, V.; Lazovic, G.; Mirjanic, D.; Fecht, H.; Vlahovic, B.; Walter, A. The fractal nature as new frontier in microstructural characterization and relativization of scale sizes within space. Mod. Phys. Lett. B 2020, 34, 22. [Google Scholar] [CrossRef]
- Devaney, R.L. A First Course in Chaotic Dynamical Systems: Theory and Experiment; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hutchinson, J.E. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Schoenfeld, A.H.; Gruenhage, G. An alternate characterization of the Cantor set. Proc. Am. Math. Soc. 1975, 53, 235–236. [Google Scholar] [CrossRef]
- Naschie, M.S.E. The theory of Cantorian spacetime and high energy particle physics. Chaos Solitons Fractals 2009, 41, 2635–2646. [Google Scholar] [CrossRef]
- Marek-Crnjac, L. Partially ordered sets, transfinite topology and the dimension of Cantorian-fractal spacetime. Chaos Solitons Fractals 2009, 42, 1796–1799. [Google Scholar] [CrossRef]
- Callan, C.G.; Dashen, R.F.; Gross, D.J. The structure of the gauge theory vacuum. Phys. Lett. B 1976, 63, 334–340. [Google Scholar] [CrossRef]
- Losevac, A.; Nekrasovab, N.; Shatashvilic, S. Issues in topological gauge theory. Nucl. Phys. B 1998, 534, 549–611. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Quintela, M.A.; Bujan-Nunez, M.C.; Perez-Moure, J.C. Fractal analysis of Brownian dynamics simulations of diffusion-controlled reactions. Chem. Phys. 1989, 132, 83–89. [Google Scholar] [CrossRef]
- Mitić, V.V.; Paunović, V.; Lazović, G.; Kocić, L.; Fecht, H. Fractal dimension of fractals tensor product ferroelectric ceramic materials frontiers. Ferroelectrics 2018, 535, 114–119. [Google Scholar] [CrossRef]
- Seshadri, V.; West, B.J. Fractal dimensionality of Levy processes. Proc. Natl. Acad. Sci. USA 1982, 79, 4501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küchler, U.; Tappe, S. Tempered stable distributions and processes. Stoch. Process. Their Appl. 2013, 123, 4256–4293. [Google Scholar] [CrossRef]
- Rosiński, J. Tempering stable processes. Stoch. Process. Their Appl. 2007, 117, 677–707. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Q.; Kim, P.; Song, R. Sharp heat kernel estimates for relativistic stable processes in open sets. Ann. Probab. 2012, 40, 213–244. [Google Scholar] [CrossRef] [Green Version]
- Rodnianski, I. Fractal solutions of the Schrodinger equation. Contemp. Math. 2000, 255, 181–188. [Google Scholar]
- Rami, E.N.A. On the fractional minimal length Heisenberg-Weyl uncertainty relation from fractional Riccati generalized momentum operator. Chaos Solitons Fractals 2009, 42, 84–88. [Google Scholar] [CrossRef]
- Youssri, Y.H. Orthonormal Ultraspherical Operational Matrix Algorithm for Fractal–Fractional Riccati Equation with Generalized Caputo Derivative. Fractal Fract. 2021, 5, 100. [Google Scholar] [CrossRef]
- He, J.-H.; El-Dib, Y.O.; Mady, A.A. Homotopy Perturbation Method for the Fractal Toda Oscillator. Fractal Fract. 2021, 5, 93. [Google Scholar] [CrossRef]
- Wang, L.; Lu, X.; Liu, L.; Xiao, J.; Zhang, G.; Guo, F.; Li, L. Influence of MgO on the Hydration and Shrinkage Behavior of Low Heat Portland Cement-Based Materials via Pore Structural and Fractal Analysis. Fractal Fract. 2022, 6, 40. [Google Scholar] [CrossRef]
- Barnsley, M.; Vince, A. Developments in fractal geometry. Bull. Math. Sci. 2013, 3, 299–348. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilić, I.D.; Visnjić, J.M.; Mitić, V.V.; Randjelović, B.; Ćirić, L.D. Mathematical Approach to Distant Correlations of Physical Observables and Its Fractal Generalisation. Fractal Fract. 2022, 6, 104. https://doi.org/10.3390/fractalfract6020104
Ilić ID, Visnjić JM, Mitić VV, Randjelović B, Ćirić LD. Mathematical Approach to Distant Correlations of Physical Observables and Its Fractal Generalisation. Fractal and Fractional. 2022; 6(2):104. https://doi.org/10.3390/fractalfract6020104
Chicago/Turabian StyleIlić, Ivana D., Jelena M. Visnjić, Vojislav V. Mitić, Branislav Randjelović, and Luka D. Ćirić. 2022. "Mathematical Approach to Distant Correlations of Physical Observables and Its Fractal Generalisation" Fractal and Fractional 6, no. 2: 104. https://doi.org/10.3390/fractalfract6020104
APA StyleIlić, I. D., Visnjić, J. M., Mitić, V. V., Randjelović, B., & Ćirić, L. D. (2022). Mathematical Approach to Distant Correlations of Physical Observables and Its Fractal Generalisation. Fractal and Fractional, 6(2), 104. https://doi.org/10.3390/fractalfract6020104