Common Fixed Point Theorems for Two Mappings in Complete b-Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Existence and Uniqueness of Common Fixed Points for Two Mappings
3.2. A Generalized Form of Jungck Fixed Point Theorem
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostravien. 1993, 1, 5–13. [Google Scholar]
- Samet, B. The class of (φ, ψ)-type contractions in b-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 92. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, S.K. Common fixed points in b-metric spaces endowed with a graph. Mat. Vesnik. 2016, 68, 140–154. [Google Scholar]
- Imdad, M.; Asim, M.; Gubran, R. Common fixed point theorems for g-generalized contractive mappings in b-metric spaces. Indian J. Math. 2018, 60, 85–105. [Google Scholar]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, M.; Vetro, P. Fixed point results for F-contractive mappings of Hardy-Rogers-type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Salimi, P.S. Suzuki-Wardowski type fixed point theorems for α-GF-contractions. Taiwan. J. Math. 2014, 18, 1879–1895. [Google Scholar] [CrossRef]
- Lukács, A.; Kajántó, S. Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Mınak, G.; Helvacı, A.; Altun, I. Ćirić type generalized F-contractions on complete metric spaces and fixed point results. Filomat 2014, 28, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Filomat 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Reich, S. Fixed points of contractive functions. Boll. Della Unione Mat. Ital. 1972, 5, 26–42. [Google Scholar]
- Reich, S.; Shafrir, I. Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 1990, 19, 537–558. [Google Scholar] [CrossRef]
- Reich, S. Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 1978, 62, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Hammad, H.A.; Bota, M.F.; Guran, L. Wardowski’s contraction and fixed point technique for solving systems of functional and integral equations. J. Funct. Spaces 2021, 2021, 7017046. [Google Scholar] [CrossRef]
- Hammad, H.A.; De la Sen, M.; Aydi, H. Analytical solution for differential and nonlinear integral equations via Fwe-Suzuki contractions in we-modified-metric-like spaces. J. Funct. Spaces 2021, 2021, 6128586. [Google Scholar]
- Hammad, H.A.; De la Sen, M.; Agarwal, P. New coincidence point results for generalized graph-preserving multivalued mappings with applications. Adv. Differ. Equ. 2021, 2021, 334. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems for single- and set-valued F-contractions in b-metric spaces. J. Fixed Point Theory Appl. 2018, 20, 35. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K. Fixed point theorems for set-valued mappings in b-metric spaces. Fixed Point Theory 2017, 18, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.J. Some generalizations of fixed point theorems and common fixed point theorems. J. Fixed Point Theory Appl. 2018, 20, 144. [Google Scholar]
- Chen, L.; Huang, S.; Li, C.; Zhao, Y. Several fixed-point theorems for F-contractions in complete Branciari b-metric spaces and applications. J. Funct. Spaces 2020, 2020, 7963242. [Google Scholar] [CrossRef]
- Chifu, C.; Petruşel, G. Fixed points for multivalued contractions in b-metric spaces with applications to fractals. Taiwan. J. Math. 2014, 18, 1365–1375. [Google Scholar] [CrossRef]
- Jungck, G. Commuting mappings and fixed points. Am. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
- Hardy, G.E.; Rogers, T. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- Sintunavarat, W. Nonlinear integral equations with new admissibility types in b-metric spaces. J. Fixed Point Theory Appl. 2016, 18, 397–416. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xia, X.; Zhao, Y.; Liu, X. Common Fixed Point Theorems for Two Mappings in Complete b-Metric Spaces. Fractal Fract. 2022, 6, 103. https://doi.org/10.3390/fractalfract6020103
Chen L, Xia X, Zhao Y, Liu X. Common Fixed Point Theorems for Two Mappings in Complete b-Metric Spaces. Fractal and Fractional. 2022; 6(2):103. https://doi.org/10.3390/fractalfract6020103
Chicago/Turabian StyleChen, Lili, Xin Xia, Yanfeng Zhao, and Xin Liu. 2022. "Common Fixed Point Theorems for Two Mappings in Complete b-Metric Spaces" Fractal and Fractional 6, no. 2: 103. https://doi.org/10.3390/fractalfract6020103
APA StyleChen, L., Xia, X., Zhao, Y., & Liu, X. (2022). Common Fixed Point Theorems for Two Mappings in Complete b-Metric Spaces. Fractal and Fractional, 6(2), 103. https://doi.org/10.3390/fractalfract6020103