Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means of Pseudo Order Relation
Abstract
:1. Introduction
2. Preliminaries
- Setting , we get the p,h-convex IVM introduced by Khan et al. [42] given by
- Setting , we get a p-convex IVM.
- Setting we get a convex IVM, namely we obtain
3. Main Results
- 1.
- 2.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952; 324p. [Google Scholar]
- Siricharuanun, P.; Erden, S.; Ali, M.A.; Budak, H.; Chasreechai, S.; Sitthiwirattham, T. Some New Simpson’s and Newton’s Formulas Type Inequalities for Convex Functions in Quantum Calculus. Mathematics 2021, 9, 1992. [Google Scholar] [CrossRef]
- You, X.; Ali, M.A.; Budak, H.; Reunsumrit, J.; Sitthiwirattham, T. Hermite–Hadamard–Mercer-Type Inequalities for Harmonically Convex Mappings. Mathematics 2021, 9, 2556. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard-Fejr type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite–Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef] [Green Version]
- Aljaaidi, T.A.; Pachpatte, D.B. The Minkowski’s inequalities via f-Riemann-Liouville fractional integral operators. Rendiconti del Circolo Matematico di Palermo Series 2 2021, 70, 893–906. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Jarad, F.; Chu, Y.M. Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type. Math. Probl. Eng. 2020, 2020, 6598682. [Google Scholar] [CrossRef]
- Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Pečarić, J.; Proschan, F.; Tong, Y. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press, Inc.: Cambridge, MA, USA, 1992. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Cristescu, G. Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 2010, 8, 3–11. [Google Scholar]
- Dragomir, S.S. An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 2002, 3, 31. [Google Scholar]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for sconvex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar]
- El Farissi, A. Simple proof and refeinment of Hermite-Hadamard inequality. J. Math. Ineq. 2010, 4, 365–369. [Google Scholar] [CrossRef]
- Kikianty, E.; Dragomir, S.S. Hermite-Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space. Math. Inequal. Appl. 2010. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Lacković, I.B. Hermite and convexity. Aequ. Math. 1985, 28, 229–232. [Google Scholar] [CrossRef]
- Hermann, R. Fractional Calculus an Introduction for Physicists; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011; p. 596224. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus Theory and Applications of Differentation and Integration to Arbitrary Order; Academic Press, Inc.: London, UK, 1974. [Google Scholar]
- Stojiljković, V.; Ramaswamy, R.; Alshammari, F.; Ashour, O.A.; Alghazwani, M.L.H.; Radenović, S. Hermite–Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions. Fractal Fract. 2022, 6, 376. [Google Scholar] [CrossRef]
- Stojiljković, V.; Ramaswamy, R.; Ashour Abdelnaby, O.A.; Radenović, S. Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting. Mathematics 2022, 10, 3491. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanţă, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal Fract. 2022, 6, 518. [Google Scholar] [CrossRef]
- Afzal, W.; Alb Lupaş, A.; Shabbir, K. Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions. Mathematics 2022, 10, 2970. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Treanţă, S.; Nonlaopon, K. Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions. AIMS Math. 2023, 8, 3303–3321. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Ab Ghani, A.T.; Abdullah, L. Extended Perturbed Mixed Variational-Like Inequalities for Fuzzy Mappings. J. Math. 2021, 2021, 6652930. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.-M. New Hermite-Hadamard Type Inequalities for (h1, h2)-Convex Fuzzy-IntervalValued Functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite–Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Yang, X.J. General Fractional Derivatives Theory, Methods and Applications; Taylor and Francis Group: London, UK, 2019. [Google Scholar]
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Hadamard type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătas, A.; Saeed, T. Generalized Fractional Integral Inequalities for p-Convex Fuzzy Interval-Valued Mappings. Fractal Fract. 2022, 6, 324. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; MR1225604; Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Fang, Z.; Shi, R. On the (p,h)-convex function and some integral inequalities. J. Inequalities Appl. 2014, 2014, 45. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J.L.G. Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Jia, W.; Yussouf, M.; Farid, G.; Khan, K.A. Hadamard and Fejér–Hadamard inequalities for (α, h–m)– p–convex functions via Riemann–Liouville fractional integrals. Math. Probl. Eng. 2021, 2021, 9945114. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I. Some Novel Inequalities for LR-(p,h)-Convex Interval Valued Functions by Means of Pseudo Order Relation. Math. Methods Appl. Sci. 2021, 45, 1310–1340. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Yıldız, Ç.; Akdemir, A.O.; Set, E. On some inequalities for s-convex functions and applications. J. Inequalities Appl. 2013, 2013, 333. [Google Scholar] [CrossRef]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Awan, M.U.; Noor, K.I.; Postolache, M. Some Integral Inequalities for p-Convex Functions. Filomat 2016, 30, 2435–2444. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojiljković, V.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means of Pseudo Order Relation. Fractal Fract. 2022, 6, 726. https://doi.org/10.3390/fractalfract6120726
Stojiljković V, Ramaswamy R, Abdelnaby OAA, Radenović S. Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means of Pseudo Order Relation. Fractal and Fractional. 2022; 6(12):726. https://doi.org/10.3390/fractalfract6120726
Chicago/Turabian StyleStojiljković, Vuk, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, and Stojan Radenović. 2022. "Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means of Pseudo Order Relation" Fractal and Fractional 6, no. 12: 726. https://doi.org/10.3390/fractalfract6120726
APA StyleStojiljković, V., Ramaswamy, R., Abdelnaby, O. A. A., & Radenović, S. (2022). Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means of Pseudo Order Relation. Fractal and Fractional, 6(12), 726. https://doi.org/10.3390/fractalfract6120726