Ultimate Boundedness and Finite Time Stability for a High Dimensional Fractional-Order Lorenz Model
Abstract
:1. Introduction
2. Mathematical Model
2.1. Integer Order Five-Dimensional Lorenz Model
2.2. Basic Definitions of Fractional Calculus
2.3. Fractional Five-Dimensional Lorenz Model
3. Mittag-Leffler GAS Estimation of the Fractional Five-Dimensional Lorenz Model
4. Finite-Time Stabilization of Fractional Order System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahimi, M.A.; Salarieh, H.; Alasty, A. Stabilizing periodic orbits of fractional order chaotic systems via linear feedback theory. Appl. Math. Model. 2012, 36, 863–877. [Google Scholar] [CrossRef]
- Pham, V.T.; Kingni, S.T.; Volos, C.; Jafari, S.; Kapitaniak, T. A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization. Int. J. Electron. Commun. 2017, 78, 220–227. [Google Scholar] [CrossRef]
- He, Y.; Peng, J.; Zheng, S. Fractional-order financial fystem and fixed-time synchronization. Fractal Fract. 2022, 6, 507. [Google Scholar] [CrossRef]
- Wang, S.; He, S.; Yousefpour, A.; Jahanshahi, H.; Repnik, R.; Perc, M. Chaos and complexity in a fractional-order financial system with time delays. Chaos Solitons Fractals 2020, 131, 109521. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Wang, H. Complexity analysis and dsp implementation of the fractional-order Lorenz hyperchaotic system. Entropy 2015, 17, 8299–8311. [Google Scholar] [CrossRef] [Green Version]
- Li, C.L.; Zhang, J. Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability. Int. J. Syst. Sci. 2016, 47, 2440–2448. [Google Scholar] [CrossRef]
- Li, C.L.; Su, K.L.; Wu, L. Adaptive sliding mode control for synchronization of a fractional-order chaotic system. J. Comput. Nonlinear Dyn. 2013, 8, 031005–031011. [Google Scholar] [CrossRef]
- Al-sawalha, M.M. Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control. Adv. Differ. Equ. 2020, 2020, 417. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Liu, D. Response of fractional oscillators with viscoelastic term under random excitation. J. Comput. Nonlinear Dyn. 2014, 9, 031015. [Google Scholar] [CrossRef]
- Jiao, Z.; Chen, Y.Q.; Podlubny, I. Distributed-Order Dynamic Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
- Xu, B.; Chen, D.; Zhang, H.; Wang, F. Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system. Chaos Solitons Fractals 2015, 75, 50–61. [Google Scholar] [CrossRef]
- Rajagopal, K.; Bayani, A.; Jafari, S.; Karthikeyan, A.; Hussain, I. Chaotic dynamics of a fractional order glucoseinsulin regulatory system. Front. Inf. Technol. Electron. Eng. 2019, 21, 1108–1118. [Google Scholar] [CrossRef]
- Ardehaei, M.F.; Farahi, M.H.; Effati, S. Finite time synchronization of fractional chaotic systems with several slaves in an optimal manner. Phys. Scr. 2020, 95, 035219. [Google Scholar] [CrossRef]
- Aghababa, M.P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 2012, 69, 247–261. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3536–3546. [Google Scholar] [CrossRef]
- Behinfaraz, R.; Badamchizadeh, M.A. Optimal synchronization of two different in-commensurate fractional-order chaotic systems with fractional cost function. Complexity 2016, 21, 401–416. [Google Scholar] [CrossRef]
- Tavazoei, M.S.; Haeri, M. Synchronization of chaotic fractional-order systems via active sliding mode controller. Phys. A 2008, 387, 57–70. [Google Scholar] [CrossRef]
- Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E. The predictability of hydrodynamic flow. Trans. N. Y. Acad. Sci. 1963, 25, 409–432. [Google Scholar] [CrossRef]
- Saltzman, B. Finite amplitude free convection as an initial value problem. J. Atmos. Sci. 1962, 19, 329–341. [Google Scholar] [CrossRef]
- Rayleigh, L. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. 1916, 32, 529–546. [Google Scholar] [CrossRef]
- Shen, B.W. Nonlinear feedback in a five-dimensional Lorenz model. J. Atmos. Sci. 2014, 71, 1701–1723. [Google Scholar] [CrossRef]
- Shen, B.W. Nonlinear feedback in a six-dimensional Lorenz model. Impact of an additional heating term. Nonlinear Process. Geophys. 2015, 22, 749–764. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Faghih-Naini, S.; Shen, B.W. Quasi-periodic orbits in the five-dimensional non-dissipative Lorenz model: The role of the extended nonlinear feedback loop. Int. J. Bifurc. Chaos 2018, 28, 1850072. [Google Scholar] [CrossRef] [Green Version]
- Leonov, G.; Bunin, A.; Koksch, N. Attractor localization of the Lorenz system. Z. Angew. Math. Mech. 1987, 67, 649–656. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef] [Green Version]
- Liao, X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization. Sci. China Ser. E Inform. Sci. 2004, 34, 1404–1419. [Google Scholar]
- Wang, P.; Zhang, Y.; Tan, S.; Wan, L. Explicit ultimate bound sets of a new hyper-chaotic system and its application in estimating the Hausdorff dimension. Nonlinear Dyn. 2013, 74, 133–142. [Google Scholar] [CrossRef]
- Jian, J.; Zhao, Z. New estimations for ultimate boundary and synchronization control for a disk dynamo system. Nonlinear Anal. Hybrid Syst. 2013, 9, 56–66. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Chen, Z.; Li, H. Ultimate bound of a 3D chaotic system and its application in chaos synchronization. Abstr. Appl. Anal. 2014, 2014, 781594. [Google Scholar] [CrossRef] [Green Version]
- Saberi-Nik, H.; Effati, S.; Saberi-Nadjafi, J. New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system. J. Complex. 2015, 31, 715–730. [Google Scholar] [CrossRef]
- Gao, W.; Yan, L.; Saeedi, M.; Saberi-Nik, H. Ultimate bound estimation set and chaos synchronization for a financial risk system. Math. Comput. Simul. 2018, 154, 19–33. [Google Scholar] [CrossRef]
- Zhang, X. Dynamics of a class of non-autonomous Lorenz-type systems. Int. J. Bifurc. Chaos 2016, 28, 1650208. [Google Scholar] [CrossRef]
- Zhang, F.; Liao, X.; Chen, Y.-A. On the Dynamics of the Chaotic General Lorenz System. Int. J. Bifurc. Chaos 2017, 27, 1750075. [Google Scholar] [CrossRef]
- Chien, F.; Chowdhury, A.R.; Saberi-Nik, H. Competitive modes and estimation of ultimate bound sets for a chaotic dynamical financial system. Nonlinear Dyn. 2021, 106, 3601–3614. [Google Scholar] [CrossRef]
- Chien, F.; Inc, M.; Yosefzade, H.-R.; Saberi-Nik, H. Predicting the chaos and solution bounds in a complex dynamical system. Chaos Solitons Fractals 2021, 153, 111474. [Google Scholar] [CrossRef]
- Wang, H.; Dong, G. New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system. Appl. Math. Comput. 2019, 346, 272–286. [Google Scholar] [CrossRef]
- Felicio, C.C.; Rech, P.C. On the dynamics of five and six-dimensional Lorenz models. J. Phys. Commun. 2018, 2, 025028. [Google Scholar] [CrossRef]
- Zhang, D.; Deng, D. Dynamical transition and chaos for a five-dimensional Lorenz model. Math. Methods Appl. Sci. 2022, 45, 1612–1631. [Google Scholar] [CrossRef]
- Pati, N.C.; Rech, P.C. Dynamics of a high-order generalized Lorenz model for magnetoconvection. Int. J. Bifurc. Chaos 2020, 30, 2050187. [Google Scholar] [CrossRef]
- Camacho, N.A.; Mermoud, M.A.D.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simulat. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Pan, W.; Li, T.; Sajid, M.; Ali, S.; Pu, L. Parameter identification and the finite-time combination-combination synchronization of fractional-order chaotic systems with different structures under multiple stochastic disturbances. Mathematics 2022, 10, 712. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Lu, S.; Shateyi, S.; Saberi-Nik, H. Ultimate Boundedness and Finite Time Stability for a High Dimensional Fractional-Order Lorenz Model. Fractal Fract. 2022, 6, 630. https://doi.org/10.3390/fractalfract6110630
Huang M, Lu S, Shateyi S, Saberi-Nik H. Ultimate Boundedness and Finite Time Stability for a High Dimensional Fractional-Order Lorenz Model. Fractal and Fractional. 2022; 6(11):630. https://doi.org/10.3390/fractalfract6110630
Chicago/Turabian StyleHuang, Min, Shichang Lu, Stanford Shateyi, and Hassan Saberi-Nik. 2022. "Ultimate Boundedness and Finite Time Stability for a High Dimensional Fractional-Order Lorenz Model" Fractal and Fractional 6, no. 11: 630. https://doi.org/10.3390/fractalfract6110630
APA StyleHuang, M., Lu, S., Shateyi, S., & Saberi-Nik, H. (2022). Ultimate Boundedness and Finite Time Stability for a High Dimensional Fractional-Order Lorenz Model. Fractal and Fractional, 6(11), 630. https://doi.org/10.3390/fractalfract6110630