Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method
Abstract
:1. Introduction
2. Governing Model
3. Important Definitions
3.1. -Derivative
3.2. M-Truncated Derivative
4. Description of Kudryashov’s R Function Method [31]
5. Mathematical Analysis
- , , , , , .
6. Graphical Illustrations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peyrard, M.; Bishop, A.R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 1989, 62, 2755. [Google Scholar] [CrossRef]
- Dauxois, T.; Peyrard, M.; Bishop, A.R. Entropy-driven DNA denaturation. Phys. Rev. E 1993, 47, R44–R47. [Google Scholar] [CrossRef] [PubMed]
- Dauxois, T.; Peyrard, M.; Bishop, A.R. Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. E 1993, 47, 684–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauxois, T.; Peyrard, M. Entropy-driven transition in a one-dimensional system. Phys. Rev. E 1995, 51, 4027–4040. [Google Scholar] [CrossRef] [PubMed]
- Barré, J.; Dauxois, T. Lyapunov exponents as a dynamical indicator of a phase transition. Europhys. Lett. 2001, 55, 164. [Google Scholar] [CrossRef] [Green Version]
- Theodorakopoulos, N. DNA denaturation bubbles at criticality. Phys. Rev. E 2008, E77, 031919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillebrand, M.; Kalosakas, G.; Bishop, A.R.; Skokos, C. Bubble lifetimes in DNA gene promoters and their mutations affecting transcription. J. Chem. Phys. 2021, 155, 095101. [Google Scholar] [CrossRef] [PubMed]
- Ares, S.; Voulgarakis, N.K.; Rasmussen, K.O.; Bishop, A.R. Bubble Nucleation and Cooperativity in DNA Melting. Phys. Rev. Lett. 2005, 94, 035504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ares, S.; Kalosakas, G. Distribution of bubble lengths in DNA. Nano Lett. 2007, 7, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Cule, D.; Hwa, T. Denaturation of Heterogeneous DNA. Phys. Rev. Lett. 1997, 79, 2375–2378. [Google Scholar] [CrossRef]
- Hillebrand, M.; Kalosakas, G.; Schwellnus, A.; Skokos, C. Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model. Phys. Rev. E 2019, E99, 022213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voulgarakis, N.K.; Kalosakas, G.; Rasmussen, R.O.; Bishop, A.R. Temperature-Dependent signatures of coherent vibrational openings in DNA. Nano Lett. 2004, 4, 629–632. [Google Scholar] [CrossRef]
- Kalosakas, G.; Rasmussen, K.O.; Bishop, A.R. Non-exponential decay of base-pair opening fluctuations in DNA. Chem. Phys. Lett. 2006, 432, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Peyrard, M.; Farago, J. Nonlinear localization in thermalized lattices: Application to DNA. Physcia A 2000, 288, 199–217. [Google Scholar] [CrossRef]
- Peyrard, M. Nonlinear dynamics and statistical physics of DNA. Nonlinearity 2004, 17, R1–R40. [Google Scholar] [CrossRef] [Green Version]
- Weber, G.; Essex, J.W.; Neylon, C. Probing the microscopic flexibility of DNA from melting temperatures. Nat. Phys. 2009, 5, 769–773. [Google Scholar] [CrossRef]
- Maniadis, P.; Alexandrov, B.S.; Bishop, A.R.; Rasmussen, K.O. Feigenbaum cascade of discrete breathers in a model of DNA. Phys. Rev. Lett. 2011, 83, 011904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniz, M.I.; Lackey, H.H.; Heemstra, J.M.; Weber, G. DNA/TNA mesoscopic modeling of melting temperatures suggests weaker hydrogen bonding of CG than in DNA/RNA. Chem. Phys. Lett. 2020, 749, 137413. [Google Scholar] [CrossRef]
- Zoli, M. End-to-end distance and contour length distribution functions of DNA helices. J. Chem. Phys. 2018, 148, 214902. [Google Scholar] [CrossRef] [Green Version]
- Hillebrand, M.; Kalosakas, G.; Skokos, C.; Bishop, A.R. Distributions of bubble lifetimes and bubble lengths in DNA. Phys. Rev. E 2020, 102, 062114. [Google Scholar] [CrossRef] [PubMed]
- Zoli, M. Base pair fluctuations in helical models for nucleic acids. J. Chem. Phys. 2021, 154, 194102. [Google Scholar] [CrossRef]
- Agüero, M.A.; Najera, M.D.; Carrilo, M. Nonclassic solitonic structures in DNA’s vibrational dynamics. Int. J. Mod. Phys. 2008, 22, 2571–2582. [Google Scholar] [CrossRef]
- Najera, L.; Carrillo, M.; Aguero, M.A. Non-classic solitons and the broken hydrogen bonds in DNA vibrational dynamics. Adv. Stud. Theor. Phys. 2010, 4, 495–510. [Google Scholar]
- Ali, K.K.; Cattani, C.; Gómez-Aguilar, J.F.; Baleanu, D.; Osman, M.S. Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. Chaos Solitons Fractals 2020, 139, 110089. [Google Scholar] [CrossRef]
- Manafian, J.; Ilhan, A.O.; Mohammed, A.S. Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard–Bishop model. AIMS Math. 2020, 5, 2461–2483. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar]
- Zafar, A.; Ali, K.K.; Raheel, M.; Jafar, N.; Nisar, K.S. Soliton solutions to the DNA Peyrard–Bishop equation with beta-derivative via three distinctive approaches. Eur. Phys. J. Plus 2020, 135, 726. [Google Scholar] [CrossRef]
- Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Taneco-Hernandez, M.A. Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense. AEU-Int. J. Electron. Commun. 2018, 85, 108–117. [Google Scholar] [CrossRef]
- Salahshour, S.; Ahmadian, A.; Abbasbandy, S.; Baleanu, D. M-fractional derivative under interval uncertainty: Theory, properties and applications. Chaos Solitons Fractals 2018, 117, 84–93. [Google Scholar] [CrossRef]
- Dan, J.; Sain, S.; Choudhury, A.G.; Garai, S. Solitary wave solutions of nonlinear PDEs using Kudryashov’s R function method. J. Mod. Opt. 2020, 67, 1499–1507. [Google Scholar] [CrossRef]
- Sirisubtawee, S.; Koonprasert, S. Exact traveling wave solutions of certain nonlinear partial differential equations using the (G′/G2)-expansion method. Adv. Math. Phys. 2018, 2018, 7628651. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Akram, G.; Sadaf, M.; Mariyam, H.; Abbas, M. Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method. Fractal Fract. 2022, 6, 616. https://doi.org/10.3390/fractalfract6100616
Wang X, Akram G, Sadaf M, Mariyam H, Abbas M. Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method. Fractal and Fractional. 2022; 6(10):616. https://doi.org/10.3390/fractalfract6100616
Chicago/Turabian StyleWang, Xiaoming, Ghazala Akram, Maasoomah Sadaf, Hajra Mariyam, and Muhammad Abbas. 2022. "Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method" Fractal and Fractional 6, no. 10: 616. https://doi.org/10.3390/fractalfract6100616
APA StyleWang, X., Akram, G., Sadaf, M., Mariyam, H., & Abbas, M. (2022). Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method. Fractal and Fractional, 6(10), 616. https://doi.org/10.3390/fractalfract6100616