Nontrivial Solutions of a Class of Fourth-Order Elliptic Problems with Potentials
Abstract
:1. Introduction
2. Preliminaries
- (i)
- There exist ρ, R such that for all with .
- (ii)
- If is the -eigenfunction of , and , then as .
3. The Proofs of Main Results
- (F)
- and for all .
- (F)
- uniformly in , and (F) with ; ,
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ambrosetti, A.; Brezis, H.; Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 1994, 122, 519–543. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, D.G.D.; Gossez, J.P.; Ubilla, P. Local superlinearity and sublinearity for indefinite semilinear elliptic problems. J. Funct. Anal. 2003, 199, 452–467. [Google Scholar] [CrossRef]
- Yin, L.F.; Jiang, S. Existence of nontrivial solutions for modified nonlinear fourth-order elliptic equations with indefinite potentia. J. Math. Anal. Appl. 2022, 505, 125459. [Google Scholar] [CrossRef]
- Mao, A.; Wang, W. Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in R3. J. Math. Anal. Appl. 2018, 459, 556–563. [Google Scholar] [CrossRef]
- An, Y.; Liu, R. Existence of nontrivial solutionsof an asymptotically linear fourth-order elliptic equation. Nonlinear Anal. 2008, 68, 3325–3331. [Google Scholar] [CrossRef]
- Zhang, J.H. Existence results for some fourth-order elliptic problem. Nonlinear Anal. 2001, 41, 29–36. [Google Scholar]
- Micheletti, A.M.; Pistoia, A. Three solutions of a fourth order elliptic problem via variational theorems of mixed type. Appl. Anal. 2000, 75, 43–59. [Google Scholar] [CrossRef]
- Ahmed, N.U.; Harbi, H. Mathematical analysis of dynamic models of suspension bridges. SIAM J. Appl. Math. 1998, 58, 853–874. [Google Scholar]
- MacManus, P. Poincaré inequalities and Sobolev spaces. Publ. Mat. 2002, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Alasz, P.H.; Koskela, P. Sobolev Met Poincaré; Number 688; American Mathematical Society: Providence, RI, USA, 2000; Volume 145. [Google Scholar]
- Liu, Y.; Wang, Z.P. Biharmonic equations with asymptotically linear nonlinearities. Acta Math. Sci. Ser. B Engl. Ed. 2007, 27, 549–560. [Google Scholar] [CrossRef]
- Zuo, J.; Taarabti, S.; An, T.; Repovŝ, D.D. On Nonlinear Biharmonic Problems on the Heisenberg Group. Symmetry 2022, 14, 705. [Google Scholar] [CrossRef]
- Haddouch, K.B.; Allali, Z.E.; Mermri, E.; Tsouli, N. Strict monotonicity and unique continuation for the third-order spectrum of biharmonic operator. Abstr. Appl. Anal. 2012, 2012, 571951. [Google Scholar] [CrossRef]
- Wu, Y.; Taarabti, S.; Allali, Z.E.; Hadddouch, K.B.; Zuo, J. A Class of Fourth-Order Symmetrical Kirchhoff Type Systems. Symmetry 2022, 14, 1630. [Google Scholar] [CrossRef]
- Junior, J.C.O. A class of modified nonlinear fourth-order elliptic equations with unbounded potential. Complex Var. Elliptic Equ. 2020, 66, 876–891. [Google Scholar] [CrossRef]
- Lazer, A.C.; McKenna, P.J. Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 1990, 32, 537–578. [Google Scholar] [CrossRef]
- Biswas, S.K.; Ahmed, N.U. Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations. J. Math. Control Signals Syst. 1989, 2, 1–18. [Google Scholar] [CrossRef]
- Ahmed, N.U.; Biswas, S.K. Mathematical modeling and control of large space structures with multiple appendages. J. Math. Comput. Model. 1988, 10, 891–900. [Google Scholar] [CrossRef]
- Tarantello, G. A note on a semilinear problem. Differ. Integral Equ. 1992, 5, 561–565. [Google Scholar]
- Pao, C.V. On fourth-order elliptic boundary value problems. Proc. Am. Math. Soc. 2000, 128, 1023–1030. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wu, X. Sign-changing solutions for some fourth-order nonlinear elliptic problems. J. Math. Anal. Appl. 2008, 342, 542–558. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Chen, H. A class of fourth-order elliptic equations with concave and convex nonlinearities in RN. Electron. J. Qual. Theory Differ. Equ. 2021, 71, 16. [Google Scholar]
- Hu, S.; Wang, L. Existence of nontrivial solutions for fourth-order asymptotically linear elliptic equations. Nonlinear Anal. 2014, 94, 120–132. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J. Existence of multiple solutions for a class of biharmonic equations. Discret. Dyn. Nat. Soc. 2013, 2013, 809262. [Google Scholar] [CrossRef]
- Gu, H.; An, T. Infinitely many solutions for a class of fourth-order partially sublinear elliptic problem. Bound. Value Probl. 2017, 2017, 1. [Google Scholar] [CrossRef]
- Alsaedi, R. Combined perturbation effects for a class of nonlinear fourth-order Navier problems. Complex Var. Elliptic Equ. 2018, 63, 463–471. [Google Scholar] [CrossRef]
- Pu, Y.; Wu, X.-P.; Tang, C.-L. Fourth-order Navier boundary value problem with combined nonlinearities. J. Math. Anal. Appl. 2013, 398, 798–813. [Google Scholar] [CrossRef]
- Wei, Y. Multiplicity results for some fourth-order elliptic equations. J. Math. Anal. Appl. 2012, 385, 797–807. [Google Scholar] [CrossRef] [Green Version]
- Pei, R.; Zhang, J. Non-uniformly asymptotically linear fourth-order elliptic problems. Bound. Value Probl. 2015, 2015, 209. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, J.; El Allali, Z.; Taarabti, S. Nontrivial Solutions of a Class of Fourth-Order Elliptic Problems with Potentials. Fractal Fract. 2022, 6, 568. https://doi.org/10.3390/fractalfract6100568
Zuo J, El Allali Z, Taarabti S. Nontrivial Solutions of a Class of Fourth-Order Elliptic Problems with Potentials. Fractal and Fractional. 2022; 6(10):568. https://doi.org/10.3390/fractalfract6100568
Chicago/Turabian StyleZuo, Jiabin, Zakaria El Allali, and Said Taarabti. 2022. "Nontrivial Solutions of a Class of Fourth-Order Elliptic Problems with Potentials" Fractal and Fractional 6, no. 10: 568. https://doi.org/10.3390/fractalfract6100568
APA StyleZuo, J., El Allali, Z., & Taarabti, S. (2022). Nontrivial Solutions of a Class of Fourth-Order Elliptic Problems with Potentials. Fractal and Fractional, 6(10), 568. https://doi.org/10.3390/fractalfract6100568