The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function
Abstract
:1. Introduction
2. Preliminaries
3. Grüss-Type Inequalities via Generalized Fractional Integral
4. Some Other Related Inequalities via the Generalized Prabhakar Integral
5. Special Cases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Sarivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equation; North-Holland Mathematics Studies; Elsevier Sciences B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Nikol’sk, S.M., Ed.; Translated from the 1987 Russian original, Revised by the authors; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Anderson, D.R.; Ulness, D.J. Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 2015, 10, 109–137. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 2017, 78. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. On Fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Chu, Y.M.; Wang, M.K.; Qiu, S.L. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 2012, 122, 41–51. [Google Scholar] [CrossRef]
- Wang, M.K.; Chu, Y.M.; Jiang, Y.P. Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 2016, 46, 670–691. [Google Scholar] [CrossRef]
- Qian, W.M.; Zhang, X.H.; Chu, Y.M. Sharp bounds for the Toader–Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 2017, 11, 121–127. [Google Scholar] [CrossRef]
- Vanterler da, C.; Sousa, J.; Oliveira, D.S.; Capelas de Oliveira, E. Grüss-type inequalities by means of generalized fractional integrals. Bull. Braz. Math. Soc., New Ser. 2019, 50, 1029–1047. [Google Scholar]
- Rahman, G.; Nisar, K.S.; Qi, F. Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Math. 2018, 3, 575–583. [Google Scholar] [CrossRef]
- Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K.S. Certain Chebyshev type inequalities involving fractional conformable integral operators. Mathematics 2019, 7, 364. [Google Scholar] [CrossRef]
- Kacar, E.; Kacar, Z.; Yildirim, H. Integral inequalities for Riemann–Liouville fractional integrals of a function with respect to another function. Iran. J. Math. Sci. Inform. 2018, 13, 1–13. [Google Scholar]
- Alzabut, J.; Abdeljawad, T.; Jarad, F.; Sudsutad, W. A Gronwall inequality via the generalized proportional fractional derivative with applications. J. Inequal. Appl. 2019, 2019, 101. [Google Scholar] [CrossRef]
- Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 2019, 287. [Google Scholar] [CrossRef]
- Rahman, G.; Abdeljawad, T.; Khan, A.; Nisar, K.S. Some fractional proportional integral inequalities. J. Inequal. Appl. 2019, 2019, 244. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Ghaffar, A.; Qi, F. Some inequalities of the Grüss type for conformable k-fractional integral operators. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2020, 114, 614. [Google Scholar] [CrossRef]
- Grüss, G.U. Das Maximum des absoluten Betrages von . Math. Z. 1935, 39, 215–226. [Google Scholar] [CrossRef]
- Yildirim, H.; Kirtay, Z. Ostrowski inequality for generalized fractional integral and related inequalities. Malaya J. Mat. 2014, 2, 322–329. [Google Scholar]
- Katugampola, U.N. Approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalized Mittag–Leffler function. Integral Transform. Spec. Funct. 2011, 22, 533–548. [Google Scholar] [CrossRef]
- Firas, G.; Salaheddine, B.; Alaa, A.H. Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions. Proc. R. Soc. A. 2022, 478. [Google Scholar] [CrossRef]
- Sarivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag—Leffler-type functions. Fractal Fract. 2022, 6, 54. [Google Scholar] [CrossRef]
- Goyal, R.; Agarwal, P.; Oros, G.I.; Jain, S. Extended Beta and Gamma matrix functions via 2-parameter Mittag–Leffler matrix function. Mathematics 2022, 10, 892. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Fernandez, A. On the fractional calculus of multivariate Mittag–Leffler functions. Int. J. Comput. Math. 2022, 99, 247–273. [Google Scholar] [CrossRef]
- Kreyszig, E. Introductory Functional Analysis with Applications; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Some new Riemann–Liouville fractional integral inequalities. Int. J. Math. Sci. 2014, 2014, 869434. [Google Scholar] [CrossRef]
- Li, Y.; Gu, X.M.; Zhao, J. The weighted arithmetic mean-geometric mean inequality is equivalent to the Hölder inequality. Symmetry 2018, 10, 380. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Rahman, G.; Elmasry, Y.; Samraiz, M.; Kashuri, A.; Nonlaopon, K. The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function. Fractal Fract. 2022, 6, 546. https://doi.org/10.3390/fractalfract6100546
Shao Y, Rahman G, Elmasry Y, Samraiz M, Kashuri A, Nonlaopon K. The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function. Fractal and Fractional. 2022; 6(10):546. https://doi.org/10.3390/fractalfract6100546
Chicago/Turabian StyleShao, Yabin, Gauhar Rahman, Yasser Elmasry, Muhammad Samraiz, Artion Kashuri, and Kamsing Nonlaopon. 2022. "The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function" Fractal and Fractional 6, no. 10: 546. https://doi.org/10.3390/fractalfract6100546
APA StyleShao, Y., Rahman, G., Elmasry, Y., Samraiz, M., Kashuri, A., & Nonlaopon, K. (2022). The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function. Fractal and Fractional, 6(10), 546. https://doi.org/10.3390/fractalfract6100546