Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function
Abstract
:1. Introduction
2. Hermite–Jensen–Mercer-Type Inequalities via the Caputo–Fabrizio Fractional Operator
3. Some Novel Results Related to the Caputo–Fabrizio Fractional Operator
4. Some Results in Improved Hölder Setting
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Ross, B. Fractional Calculus. Math. Mag. 1977, 50, 115–122. [Google Scholar] [CrossRef]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comp. Modell. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a genaralized fractional integral. Appl. Math. Comp. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Adil Khan, M.; Mohammad, N.; Nwaeze, E.R. Quantum Hermite-Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.-M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-Z.; Farid, G.; Nazeer, W.; Chu, Y.-M.; Dong, C.F. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function. AIMS Math. 2020, 5, 6325–6340. [Google Scholar] [CrossRef]
- Guo, S.Y.; Chu, Y.M.; Farid, G.; Mehmood, S.; Nazeer, W. Fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (s,m)-convex functions. J. Funct. Spaces 2020, 2020, 2410385. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, M.A.; Ullah, S.; Chu, Y.M. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications. J. Funct. Spaces 2020, 2020, 9845407. [Google Scholar] [CrossRef]
- Khurshid, Y.; Khan, M.A.; Chu, Y.M. Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Math. 2020, 5, 5106–5120. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Some New q-Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions. Symmetry 2020, 12, 553. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, A.; Hernández Hernández, J.E. Quantum Trapezium-Type Inequalities Using Generalized f-Convex Functions. Axioms 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms 2020, 9, 117. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Kashuri, A.; Hernández Hernández, J.E. Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions. Symmetry 2020, 12, 1034. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Hernández Hernández, J.E.; Turhan, S. On exponentially (h1,h2)-convex functions and fractional integral inequalities related. Math. Moravica. 2020, 24, 45–62. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On some new inequalities of Hadamard-type involving h-convex functions. Acta Math. Univ. Comen. 2010, 79, 265–272. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Sci. Bull. Politeh. Univ. Buchar. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. A new Hermite-Hadamard type inequality for h-convex functions. Creat. Math. Inform. 2015, 24, 191–197. [Google Scholar]
- Matłoka, M. On Hadamard’s inequality for h-convex function on a disk. Appl. Math. Comput. 2014, 235, 118–123. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Proyecciones 2015, 34, 323–341. [Google Scholar] [CrossRef]
- Bombardelli, M.; Varošanec, S. Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Mercer, A.M. A variant of Jensen’s inequality. JIPAM J. Inequal. Pure Appl. Math. 2003, 4, 1–15. [Google Scholar]
- Matković, A.; Pečarixcx, J.; Perixcx, I. A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 2006, 418, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.J.; Hernández Hernández, J.E. A variant of Jensen-Mercer Inequality for h-convex functions and Operator h-convex functions. Matua Rev. Mat. Univ. Atl. 2017, 4, 62–76. [Google Scholar]
- ÖĞülmüs, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer Type Inequalities for Fractional Integrals. Available online: https://www.researchgate.net/publication/337682540_HERMITE-HADAMARD-MERCER_TYPE_INEQUALITIES_FOR_FRACTIONAL_INTEGRALS?channel=doi&linkId=5de5677092851c83645ce741&showFulltext=true (accessed on 1 December 2019).
- Butt, S.I.; Nadeem, M.; Qaisar, S.; Akdemir, A.O.; Abdeljawad, T. Hermite-Jensen-Mercer type inequalities for conformable integrals and related results. Adv. Differ. Equ. 2020, 501. [Google Scholar] [CrossRef]
- Butt, S.I.; Umar, M.; Rashid, S. New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals. Adv. Differ. Equ. 2020, 2020, 635. [Google Scholar] [CrossRef]
- Kang, Q.; Butt, S.I.; Nazeer, W.; Nadeem, M.; Nasir, J.; Yang, H. New variant of Hermite–Jensen–Mercer inequalities via Riemann–Liouville fractional integral operators. J. Math. 2020, 2020, 4303727. [Google Scholar]
- Butt, S.I.; Akdemir, A.O.; Nasir, J.; Jarad, F. Some Hermite-Jensen-Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results. Miskolc Math. Notes 2020, 21, 689–715. [Google Scholar] [CrossRef]
- Zhao, S.; Butt, S.I.; Nazeer, W.; Nasir, J.; Umar, M.; Liu, Y. Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results. Adv. Differ. Equ. 2020, 2020, 262. [Google Scholar] [CrossRef]
- Zhao, J.; Butt, S.I.; Nasir, J.; Wang, Z.; Tlili, I. Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives. J. Funct. Spaces 2020, 2020, 7061549. [Google Scholar] [CrossRef]
- Işcan, I. Weighted Hermite–Hadamard–Mercer type inequalities for convex functions. Numer. Methods Partial Differ. Equ. 2020, 37, 118–130. [Google Scholar] [CrossRef]
- Chu, H.-H.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. New fractional estimates for Hermite-Hadamard-Merccer’s type inequalities. Alex. Eng. J. 2020, 59, 3079–3089. [Google Scholar] [CrossRef]
- Hadamard, J. E’tude sur les prope’rtie’s des fonctions entieres et en particular dune fonction considere’e par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Temur, Z. Kalanov Vector calculus and Maxwells equations: Logic errors in mathematics and electrodynamics. Open J. Math. Sci. 2020, 4, 343–355. [Google Scholar]
- Abdeljawad, T. Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017, 2017, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Işcan, I. New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 2019, 304. [Google Scholar] [CrossRef]
- Kadakal, M.; Işcan, I.; Kadakal, H.; Bekar, K. On improvements of some integral inequalities. Honam Math. J. 2021, 43, 441–452. [Google Scholar]
- Gurbuz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequal. Appl. 2020, 2020, 172–189. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Saleem, M.S.; Sajid, S.; Zahoor, M.S.; Kashuri, A. Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function. Fractal Fract. 2021, 5, 269. https://doi.org/10.3390/fractalfract5040269
Vivas-Cortez M, Saleem MS, Sajid S, Zahoor MS, Kashuri A. Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function. Fractal and Fractional. 2021; 5(4):269. https://doi.org/10.3390/fractalfract5040269
Chicago/Turabian StyleVivas-Cortez, Miguel, Muhammad Shoaib Saleem, Sana Sajid, Muhammad Sajid Zahoor, and Artion Kashuri. 2021. "Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function" Fractal and Fractional 5, no. 4: 269. https://doi.org/10.3390/fractalfract5040269
APA StyleVivas-Cortez, M., Saleem, M. S., Sajid, S., Zahoor, M. S., & Kashuri, A. (2021). Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function. Fractal and Fractional, 5(4), 269. https://doi.org/10.3390/fractalfract5040269