Nonlocal Boundary Value Problems of Nonlinear Fractional (p,q)-Difference Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- , for .
- (i)
- ,
- (ii)
3. Main Results
- , for each and
- (i)
- whenever ;
- (ii)
- A is compact and continuous;
- (iii)
- B is a contraction mapping.
- there exists a function and a non-decreasing function , withwhere
- (i)
- Ψ has a fixed point in or
- (ii)
- there is a (the boundary of in ) and with
- there exist functions and a non-decreasing function such that
- there exists a number such thatwhere
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P.; Belmekki, M.; Benchohra, M. A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009, 2009, 981728. [Google Scholar] [CrossRef] [Green Version]
- Gafiychuk, V.; Datsko, B.; Meleshko, V. Mathematical modeling of different types of instabilities in time fractional reaction-diffusion system. Comput. Math. Appl. 2010, 59, 101–1107. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Agarwal, R.P. On nonlocal fractional boundary value problems. Dyn. Contin. Discrete Impuls. Syst. 2011, 18, 535–544. [Google Scholar]
- Baleanu, D.; Mustafa, O.G.; O’Regan, D. A Nagumo-like uniqueness theorem for fractional differential equations. J. Phys. Math. Theor. 2011, 44, 39. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wu, Y. Positive solutions for a nonlocal fractional differential equation. Nonlinear. Anal. 2011, 74, 3599–3605. [Google Scholar] [CrossRef]
- Ford, N.J.; Morgado, M.L. Fractional boundary value problems: Analysis and numerical methods. Fract. Calc. Appl. Anal. 2011, 14, 554–567. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Nieto, J.J.; Alsaidi, A.; El-Shahed, M. A study nonlinear Langevin equation involving two fractional orders in different interval. Nonlinear. Anal. 2012, 13, 599–606. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions. Electron. J. Differ. Equ. 2012, 2012, 98. [Google Scholar]
- Chen, F.; Nieto, J.J.; Zhou, Y. Global attractivity for nonlinear fractional differential equations. Nonlinear. Anal. 2012, 13, 287–298. [Google Scholar] [CrossRef]
- Kiethelm, K. The Analysis of Fractional Differential Equation; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, H.J. Theory and Application of the Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systyms; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; Wiley-Interscience: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Accademic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations. In Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific Publishing Company: Singapore, 2014. [Google Scholar]
- Jackson, F.H. On a q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Fock, V. Zur theorie des wasserstoffatoms. Z. Physik 1935, 98, 145–154. [Google Scholar] [CrossRef]
- Bangerezaka, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef] [Green Version]
- Asawasamrit, S.; Sudprasert, C.; Ntouyas, S.; Tariboon, J. Some results on quantum Hanh integral inequalities. J. Inequal. Appl. 2019, 2019, 154. [Google Scholar] [CrossRef] [Green Version]
- Bangerezako, G. Variational calculus on q-nonuniform. J. Math. Anal. Appl. 2005, 306, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Exton, H. q-Hypergeometric Functions and Applications; Hastead Press: New York, NY, USA, 1983. [Google Scholar]
- Annyby, H.M.; Mansour, S.K. q-fractional Calculus and Equations; Springer: Berlin/Helidelberg, Germany, 2012. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Swizterland, 2012. [Google Scholar]
- Ernst, T. A History of q-Calculus and a New Method; UUDM Report 2000:16; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Ferreira, R.A.C. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 2010, 70. [Google Scholar] [CrossRef]
- Aslam, M.; Awan, M.U.; Noor, K.I. Quantum Ostrowski inequalities for q-differentiable convex function. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Gauchman, H. Integral inequalities in q-calculus. J. Comput. Appl. Math. 2002, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Aljasem, M. Riemann-Liouville fractional quantum Hermite-Hadamard type inequalities for convex functions. Konuralp J. Math. 2020, 8, 122–136. [Google Scholar]
- Dobrogowska, A.; Odzijewicz, A. A second order q-difference equation solvable by factorization method. J. Comput. Appl. Math. 2006, 193, 319–346. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rahman, M. Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 2007, 13, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.H.; Simeonov, P. q-Difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233, 749–761. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Guseinov, G.S. The h-Laplace and q-Laplace transforms. J. Comput. Appl. Math. 2010, 365, 75–92. [Google Scholar] [CrossRef] [Green Version]
- El-Shahed, M.; Hassan, H.A. Positive solutions of q-difference equation. Proc. Amer. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B. Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 2011, 2011, 94. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Nieto, J.J. On nonlocal boundary value problems of nonlinear q-difference equation. Adv. Differ. Equ. 2012, 2012, 81. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. 1967, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Math. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Comm. Appl. Nonlinear Anal. 2012, 19, 59–72. [Google Scholar]
- El-Shahed, M.; Al-Askar, F. Positive solutions for boundary value problem of nonlinear fractional q-difference equations. ISRN Math. Anal. 2011, 2011, 385459. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-difference equations. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivative. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
- Ma, J.; Yang, J. Existence of solutions for multi-point boundary value problem of fractional q-difference equation. Appl. Math. Comput. 2011, 2011, 92. [Google Scholar] [CrossRef]
- Nuntigrangjana, T.; Putjuso, S.; Ntouyas, S.K.; Tariboon, J. Impulsive quantum (p,q)-difference equations. Adv. Differ. Equ. 2020, 2020, 98. [Google Scholar]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Burban, I. Two-parameter deformation of the oscillator algebra and (p,q)-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 1995, 2, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Burban, I.M.; Klimyk, A.U. (p,q)-differentiation, (p,q)-integration, and (p,q)-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
- Hounkonnou, M.N.; Désiré, J.; Kyemba, B.R. (p,q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar]
- Aral, A.; Gupta, V. Applications of (p,q)-gamma function to Szász durrmeyer operators. Publ. de L’Institute Math. 2017, 102, 211–220. [Google Scholar] [CrossRef]
- Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and (p,q)-special functions. Adv. Differ. Equ. 2007, 335, 268–279. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p. q)-taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Usman, T.; Saif, M.; Choi, J. Certain identities associated with (p,q)-binomial coefficients and (p,q)-Stirling polynomials of the second kind. Symmetry. 2020, 12, 1436. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the (p,q)-gamma and the (p,q)-beta functions. arXiv 2015, arXiv:1506.07394. [Google Scholar]
- Sadjang, P.N. On two (p,q)-analogues of the laplace transform. J. Differ. Equ. Appl. 2017, 23, 1562–1583. [Google Scholar]
- Mursaleen, M.; Ansari, K.J.; Khan, A. On (p,q)-analogues of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Erratum to “On (p,q)-analogues of Bernstein operators”. Appl. Math. Comput. 2016, 278, 70–71. [Google Scholar] [CrossRef]
- Kang, S.M.; Rafiq, A.; Acu, A.M.; Ali, F.; Kwun, Y.C. Erratum to “Some approximation properties of (p,q)-Bernstein operators”. J. Inequal. Appl. 2016, 2016, 169. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Khan, F.; Khan, A. Approximation by (p,q)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory. 2016, 10, 1725–1740. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.-B.; Zhou, G. On (p,q)-analogues of Kantorovich type Bernstein-Stancu-Schurer operator. Appl. Math. Comput. 2016, 276, 12–20. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Some approximation results of (p,q)-analogues of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of (p,q)-Baskakov operators. J. Inequal. Appl. 2016, 2016, 98. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Nasiruzzaman, M.; Khan, F.; Khan, A. (p,q)-analogues of divided difference and Bernstein operators. J. Nonlinear Funct. Anal. 2017, 2017, 25. [Google Scholar]
- Wachs, M.; White, D. (p,q)-Stirling numbers and set partition statistics. J. Combin. Theory Ser. A. 1991, 56, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Wachs, M.L. σ-restricted growth functions and (p,q)-Stirling numbers. J. Combin. Theory Ser. A 1994, 68, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Remmel, J.B.; Wachs, M. Rook theory, generalized Stirling numbers and (p,q)-analogues. Electron. J. Combin. 2004, 11, R84. [Google Scholar] [CrossRef] [Green Version]
- Médics, A.D.; Leroux, P. Generalized Stirling numbers, convolution formula and (p,q)-analogues. Can. J. Math. 1995, 11, 474–499. [Google Scholar] [CrossRef] [Green Version]
- Bukweli-Kyemba, J.D.; Hounkonnou, M.N. Quantum deformed algebra: Coherent states and special functions. arXiv 2013, arXiv:1301.0116v1. [Google Scholar]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex functions. Axioms 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Amer, M.; Junjua, M.D.; Hassain, S.; Shahxadi, G. (p,q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef] [Green Version]
- Kamsrisuk, N.; Promsakon, C.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for (p,q)-difference equations. J. Differ. Equ. 2018, 10, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Promsakon, C.; Kamsrisuk, N.; Ntouyas, S.K.; Tariboon, J. On the second-order (p,q)-difference equation with separated boundary conditions. Adv. Math. Phys. 2018, 2018, 9089865. [Google Scholar] [CrossRef] [Green Version]
- Soontharanon, J.; Sitthiwirattham, T. On fractional (p,q)-calculus. Adv. Differ. Equ. 2020, 2020, 35. [Google Scholar] [CrossRef] [Green Version]
- Gradimir, V.M.; Vijay, G.N.M. (p,q)-beta functions and applications in approximation. Bol. Soc. Mat. Mex. 2018, 24, 219–237. [Google Scholar]
- Tun, M.; Gov, E. Some integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 95. [Google Scholar]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk. 1995, 10, 123–127. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory and Applications; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Nonlocal Boundary Value Problems of Nonlinear Fractional (p,q)-Difference Equations. Fractal Fract. 2021, 5, 270. https://doi.org/10.3390/fractalfract5040270
Neang P, Nonlaopon K, Tariboon J, Ntouyas SK, Ahmad B. Nonlocal Boundary Value Problems of Nonlinear Fractional (p,q)-Difference Equations. Fractal and Fractional. 2021; 5(4):270. https://doi.org/10.3390/fractalfract5040270
Chicago/Turabian StyleNeang, Pheak, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, and Bashir Ahmad. 2021. "Nonlocal Boundary Value Problems of Nonlinear Fractional (p,q)-Difference Equations" Fractal and Fractional 5, no. 4: 270. https://doi.org/10.3390/fractalfract5040270
APA StyleNeang, P., Nonlaopon, K., Tariboon, J., Ntouyas, S. K., & Ahmad, B. (2021). Nonlocal Boundary Value Problems of Nonlinear Fractional (p,q)-Difference Equations. Fractal and Fractional, 5(4), 270. https://doi.org/10.3390/fractalfract5040270