Stability of Parametric Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem
Abstract
:1. Introduction
2. Literature Review
3. Preliminaries
4. Mathematical Formulation
5. FGP Methodology for PIF-MOFTP
Extension of Pal’s Method to Linearize the Membership Goals
6. The SSFK for Parametric -MOFTP
6.1. KKT Optimality Conditions for Parametric FGP Model
6.2. Algorithm for Determination of the SSFK S1
Algorithm 1 Phase I: Obtain an -Pareto Optimal Solution of the Problem |
|
Algorithms 2 Phase II: Determination of the SSFK |
|
7. Numerical Example
8. Conclusions
- The parametric study of multi-choice MOTP should be addressed.
- Real-world PIF-MOFTP is a vital field in the future research.
- Rough parametric MOFTP is a vital topic to be investigated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ammar, E.E.; Youness, E.A. Study on multi-objective transportation problem with fuzzy numbers. Appl. Math. Comput. 2005, 166, 241–253. [Google Scholar]
- Bit, A.K.; Biswal, M.P.; Alam, S.S. Fuzzy programming approach to multi-criteria decision-making transportation problem. Fuzzy Sets Syst. 1992, 50, 135–141. [Google Scholar] [CrossRef]
- Cetin, N.; Tiryaki, F. A Fuzzy Approach Using Generalized Dinkelbach’s Algorithm for Multiobjective Linear Fractional Transportation Problem. Math. Probl. Eng. 2014, 2014, 702319. [Google Scholar] [CrossRef]
- Chanas, S.; Kuchta, D. A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets Syst. 1996, 82, 299–305. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. The steppingstone method for explaining linear programming calculation in transportation problem. Manag. Sci. 1954, 1, 49–69. [Google Scholar] [CrossRef]
- Diaz, J.A. Finding a complete description of all efficient solutions to a multi-objective transportation problem. Ekon.-Mat. Obz. 1979, 15, 62–73. [Google Scholar]
- El Sayed, M.; Abo-Sinna, M.A. A novel Approach for Fully Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem. Alex. Eng. J. 2020, 60, 1447–1463. [Google Scholar] [CrossRef]
- Beaula, T.; Priyadharsini, M. A new algorithm for finding a fuzzy optimal solution for intuitionistic fuzzy transportation problems. Int. J. Appl. Fuzzy Sets Artif. Intell. 2015, 5, 183–192. [Google Scholar]
- Arya, R.; Singh, P.; Kumari, S.; Obaidat, M.S. An approach for solving fully fuzzy multi-objective linear fractional optimization problems. Soft Comput. 2020, 24, 9105–9119. [Google Scholar] [CrossRef]
- Ebrahimnejad, A.; Verdegay, J.L. A new approach for solving fully intuitionistic fuzzy transportation problems. Fuzzy Optim. Decis. Mak. 2017, 17, 447–474. [Google Scholar] [CrossRef]
- Liou, J.J.; Hsu, C.-C.; Chen, Y.-S. Improving transportation service quality based on information fusion. Transp. Res. Part A Policy Pract. 2014, 67, 225–239. [Google Scholar] [CrossRef]
- Ergun, O.; Kuyzu, G.; Savelsbergh, M. Reducing truckload transportation through collaboration. Transp. Sci. 2007, 41, 206–221. [Google Scholar] [CrossRef] [Green Version]
- Sheu, J.B.; Chen, Y.J. Transportation and economics of scale in recycling low-value materials. Transp. Res. Part B Methodol. 2014, 65, 65–76. [Google Scholar] [CrossRef]
- Roy, S.K.; Maity, G.; Weber, G.-W. Multi-objective two-stage grey transportation problem using utility function with goals. Cent. Eur. J. Oper. Res. 2016, 25, 417–439. [Google Scholar] [CrossRef]
- Roy, S.K.; Maity, G.; Weber, G.W.; Gök, S.Z.A. Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal. Ann. Oper. Res. 2017, 253, 599–620. [Google Scholar] [CrossRef]
- Roy, S.K.; Mahapatra, D.R. Multi-objective interval valued transportation probabilistic problem involving lognormal. Int. J. Math. Sci. Comput. 2011, 1, 14–21. [Google Scholar]
- Roy, S.K. Multi-choice stochastic transportation problem involving Weibull distribution. Int. J. Oper. Res. 2014, 21, 38. [Google Scholar] [CrossRef]
- Maity, G.; Roy, S.K.; Verdegay, J.L. Multi-objective transportation problem with cost reliability under uncertain environment. Int. J. Comput. Intell. Syst. 2016, 9, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Maity, G.; Roy, S.K. Solving a multi-objective transportation problem with nonlinear cost and multi-choice demand. Int. J. Manag. Sci. Eng. Manag. 2014, 11, 62–70. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Gong, Z.; Zhangc, N.; Chiclanad, F. The optimization ordering model for intuitionistic fuzzy preference relations with utility functions. Knowl.-Based Syst. 2018, 162, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Jana, B.; Roy, T.K. Multi-objective intuitionistic fuzzy linear programming and its application in transportation model. Notes Intuit. Fuzzy Sets 2007, 13, 34–51. [Google Scholar]
- Verma, R.; Biswal, M.; Biswas, A. Fuzzy programming technique to solve multi-objective transportation problems with some non-linear membership functions. Fuzzy Sets Syst. 1997, 91, 37–43. [Google Scholar] [CrossRef]
- Gourav, G.; Kumari, A. An efficient method for solving intuitionistic fuzzy transportation problem of type-2. Int. J. Appl. Comput. Math. 2017, 3, 3795–3804. [Google Scholar]
- Gupta, A.; Kumar, A. A new method for solving linear multi-objective transportation problems with fuzzy parameters. Appl. Math. Model. 2012, 36, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Maity, G.; Roy, S.K. Solving multi-choice multi-objective transportation problem: A utility function approach. J. Uncertain. Anal. Appl. 2014, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Gupta, S.K. On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions. Ann. Oper. Res. 2019, 296, 211–241. [Google Scholar] [CrossRef]
- El Sayed, M.; Farahat, F. Study of Achievement Stability Set for Parametric Linear FGP Problems. Ain Shams Eng. J. 2020, 11, 1345–1353. [Google Scholar] [CrossRef]
- Veeramani, C.; Edalatpanah, S.A.; Sharanya, S. Solving the Multiobjective Fractional Transportation Problem through the Neutrosophic Goal Programming Approach. Discret. Dyn. Nat. Soc. 2021, 2021, 7308042. [Google Scholar] [CrossRef]
- Pramanik, S.; Banerjee, D. Multi-objective chance constrained capacitated transportation problem based on fuzzy goal programming. Int. J. Comput. Appl. 2012, 44, 42–46. [Google Scholar] [CrossRef]
- Edalatpanah, S.A. A nonlinear approach for neutrosophic linear programming. J. Appl. Res. Ind. Eng. 2019, 6, 367–373. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E.; Elhoseny, M. A multi-objective transportation model under neutrosophic environment. Comput. Electr. Eng. 2018, 69, 705–719. [Google Scholar] [CrossRef] [Green Version]
- Veeramani, C.; Sumathi, M. Fuzzy Mathematical Programming approach for Solving Fuzzy Linear Fractional Programming Problem. RAIRO-Oper. Res. 2014, 48, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Emam, O.E. A parametric study on multi-objective integer quadratic programming problems under uncertainty. Gen. Math. Notes 2011, 6, 49–60. [Google Scholar]
- Osman, M.S. Qualitative analysis of basic notions in parametric convex programming, (parameters in the objective function). Apl. Mat. 1977, 22, 333–348. [Google Scholar] [CrossRef]
- Osman, M.S.; Emam, O.E.; El Sayed, M.A. On Parametric Multi-level Multi-objective Fractional Programming Problems with Fuzziness in the Constraints. Br. J. Math. Comput. Sci. 2016, 18, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hsien-Chung, W. The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective functions. Fuzzy Optim. Decis. Mak. 2009, 8, 1–28. [Google Scholar]
- Saad, O.M. On stability of proper efficient solutions in multi-objective fractional programming problems under fuzziness. Math. Comput. Model. 2007, 45, 221–231. [Google Scholar] [CrossRef]
- Saad, O.M.; Hughes, J.B. Bicriterion integer linear fractional programs with parameters in the objective functions. J. Inf. Optim. Sci. 1998, 19, 97–108. [Google Scholar] [CrossRef]
- Saad, O.M.; Elshafei, M.M.; Sleem, M.M. On some stability notions for fuzzy three-level fractional programming problem. Math. Sci. Lett. 2021, 10, 23–34. [Google Scholar]
- Mahapatra, G.S.; Roy, T.K. Intuitionistic Fuzzy Number and Its Arithmetic Operation with Application on System Failure. J. Uncertain Syst. 2013, 7, 92–107. [Google Scholar]
- Mahmoodirad, A.; Allahviranloo, T.; Niroomand, S. A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft Comput. 2019, 23, 4521–4530. [Google Scholar] [CrossRef]
- Roy, S.K.; Ebrahimnejad, A.; Verdegay, J.L.; Das, S. New approach for solving intuitionistic fuzzy multi-objective transportation problem. Sadhana 2018, 43, 3. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, R.H. The relationship between goal programming and fuzzy programming. Fuzzy Sets Syst. 1997, 89, 215–222. [Google Scholar] [CrossRef]
- Pal, B.B.; Moitra, B.N.; Maulik, U. A goal programming procedure for fuzzy multi-objective linear fractional programming problem. Fuzzy Sets Syst. 2003, 139, 395–405. [Google Scholar] [CrossRef]
- Zangiabadi, M.; Maleki, H.R. Fuzzy goal programming technique to solve multi-objective transportation problems with some non-linear membership functions. Iran. J. Fuzzy Syst. 2013, 10, 61–74. [Google Scholar]
- Osman, M.; Emam, O.; El Sayed, M.A. Interactive Approach for Multi-Level Multi-Objective Fractional Programming Problems with Fuzzy Parameters. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 139–149. [Google Scholar] [CrossRef]
Z1(x) | Z2(x) | |
---|---|---|
Gij | −7.497 | 13.128 |
Gij | −7.497 | 13.128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Sayed, M.A.; El-Shorbagy, M.A.; Farahat, F.A.; Fareed, A.F.; Elsisy, M.A. Stability of Parametric Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem. Fractal Fract. 2021, 5, 233. https://doi.org/10.3390/fractalfract5040233
El Sayed MA, El-Shorbagy MA, Farahat FA, Fareed AF, Elsisy MA. Stability of Parametric Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem. Fractal and Fractional. 2021; 5(4):233. https://doi.org/10.3390/fractalfract5040233
Chicago/Turabian StyleEl Sayed, Mohamed A., Mohamed A. El-Shorbagy, Farahat A. Farahat, Aisha F. Fareed, and Mohamed A. Elsisy. 2021. "Stability of Parametric Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem" Fractal and Fractional 5, no. 4: 233. https://doi.org/10.3390/fractalfract5040233
APA StyleEl Sayed, M. A., El-Shorbagy, M. A., Farahat, F. A., Fareed, A. F., & Elsisy, M. A. (2021). Stability of Parametric Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem. Fractal and Fractional, 5(4), 233. https://doi.org/10.3390/fractalfract5040233