Qualitative Analysis of Langevin Integro-Fractional Differential Equation under Mittag–Leffler Functions Power Law
Abstract
:1. Introduction
2. Auxiliary Results
3. Existence and Uniqueness of Solutions
4. Stability Results
5. An Example
6. Conclusion Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon & Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; Volume 35. [Google Scholar]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Bazighifan, O.; Al-Kandari, M.; Al-Ghafri, K.S.; Ghanim, F.; Askar, S.; Oros, G.I. Delay Differential Equations of Fourth-Order: Oscillation and Asymptotic Properties of Solutions. Symmetry 2021, 13, 2015. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Bazighifan, O.; Panchal, S.K.; Askar, S.S.; Oros, G.I. Analytical Study of Two Nonlinear Coupled Hybrid Systems Involving Generalized Hilfer Fractional Operators. Fractal Fract. 2021, 5, 178. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivative with non-local and non-singular kernel. Therm. Sci. 2016, 20, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 2017, 130. [Google Scholar] [CrossRef] [PubMed]
- Brown, R. Mikroskopische Beobachtungen über die im Pollen der Pflanzen enthaltenen Partikeln, und über das allgemeine Vorkommen activer Molecüle in organischen und unorganischen Körpern. Ann. Phys. 1828, 90, 294–313. [Google Scholar] [CrossRef] [Green Version]
- Gouy, L. Note sur le movement brownien. J. Phys. 1988, 7, 563–564. [Google Scholar]
- Langevin, P. On the theory of Brownian motion. Compt. Rendus 1908, 146, 530–533. [Google Scholar]
- Bouchaud, J.P.; Cont, R. A Langevin approach to stock market fluctuations and crashes. Eur. Phys. J. B Condens. Matter Complex Syst. 1998, 6, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Kosinski, R.A.; Grabowski, A. Langevin equations for modeling evacuation processes. Acta Phys. Pol. Ser. B Proc. Suppl. 2010, 3, 365–376. [Google Scholar]
- Hinch, E.J. Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 1975, 72, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Fraaije, J.G.E.M.; Zvelindovsky, A.V.; Sevink, G.J.A.; Maurits, N.M. Modulated self-organization in complex amphiphilic systems. Mol. Simul. 2000, 25, 131–144. [Google Scholar] [CrossRef]
- Wodkiewicz, K.; Zubairy, M.S. Exact solution of a nonlinear Langevin equation with applications to photoelectron counting and noise-induced instability. J. Math. Phys. 1983, 24, 1401–1404. [Google Scholar] [CrossRef]
- Schluttig, J.; Alamanova, D.; Helms, V.; Schwarz, U.S. Dynamics of protein-protein encounter: A Langevin equation approach with reaction patches. J. Chem. Phys. 2008, 129, 10B616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, B.J.; Latka, M. Fractional Langevin model of gait variability. J. Neuroeng. Rehabil. 2005, 2, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picozzi, S.; West, B.J. Fractional Langevin model of memory in financial markets. Phys. Rev. 2002, 66, 046118. [Google Scholar] [CrossRef] [PubMed]
- Eab, C.H.; Lim, S.C. Fractional generalized Langevin equation approach to single-file diffusion. Phys. A Stat. Mech. Its Appl. 2010, 389, 2510–2521. [Google Scholar] [CrossRef] [Green Version]
- Kobelev, V.; Romanov, E. Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 2000, 139, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.H.; Metzler, R. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 2010, 81, 021103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, E. Fractional langevin equation. In Fractional Dynamics: Recent Advances; World Scientific Publishing Company: Singapore, 2012; pp. 285–305. [Google Scholar]
- Baghani, O. On fractional Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 675–681. [Google Scholar] [CrossRef]
- Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals 2018, 114, 332–337. [Google Scholar] [CrossRef]
- Darzi, R. New Existence Results for Fractional Langevin Equation. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2193–2203. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Panchal, S.K.; Shatanawi, W.; Abdo, M.S.; Shah, K.; Abodayeh, K. Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator. Results Phys. 2021, 24, 104045. [Google Scholar] [CrossRef]
- Abdo, M.S.; Shah, K.; Wahash, H.A.; Panchal, S.K. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos Solitons Fractals 2020, 135, 109867. [Google Scholar] [CrossRef] [PubMed]
- Baleanu, D.; Darzi, R.; Agheli, B. Existence results for Langevin equation involving Atangana-Baleanu fractional operators. Mathematics 2020, 8, 408. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Baleanu, D. Differintegration with respect to functions in fractional models involving Mittag-Leffler functions. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Burton, T.A. A fixed-point theorem of Krasnoselskii. App. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics; Inter-Science: New York, NY, USA; London, UK, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Hyers, D.H.; Rassias, T.M. Approximate homomorphisms. Aequationes Math. 1992, 44, 125–153. [Google Scholar] [CrossRef]
- Jung, S.M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: Berlin/Heidelberg, Germany, 2011; Volume 48. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalahi, M.A.; Ghanim, F.; Botmart, T.; Bazighifan, O.; Askar, S. Qualitative Analysis of Langevin Integro-Fractional Differential Equation under Mittag–Leffler Functions Power Law. Fractal Fract. 2021, 5, 266. https://doi.org/10.3390/fractalfract5040266
Almalahi MA, Ghanim F, Botmart T, Bazighifan O, Askar S. Qualitative Analysis of Langevin Integro-Fractional Differential Equation under Mittag–Leffler Functions Power Law. Fractal and Fractional. 2021; 5(4):266. https://doi.org/10.3390/fractalfract5040266
Chicago/Turabian StyleAlmalahi, Mohammed A., F. Ghanim, Thongchai Botmart, Omar Bazighifan, and Sameh Askar. 2021. "Qualitative Analysis of Langevin Integro-Fractional Differential Equation under Mittag–Leffler Functions Power Law" Fractal and Fractional 5, no. 4: 266. https://doi.org/10.3390/fractalfract5040266
APA StyleAlmalahi, M. A., Ghanim, F., Botmart, T., Bazighifan, O., & Askar, S. (2021). Qualitative Analysis of Langevin Integro-Fractional Differential Equation under Mittag–Leffler Functions Power Law. Fractal and Fractional, 5(4), 266. https://doi.org/10.3390/fractalfract5040266