An Entropy Paradox Free Fractional Diffusion Equation
Abstract
:1. Introduction
- We worked on .
- We used the two-sided Laplace transform (LT):where is any function defined on , and is its transform, provided that it has a non-empty region of convergence.
- The Fourier transform (FT), , was obtained from the LT through the substitution with
- For two variable functions, , we use a capital letter to represent the Fourier or Laplace transforms: and .
- The 2-D transforms are represented by
2. Derivatives and Diffusion Equation
2.1. Definitions and Main Properties
- —forward GL derivative.
- — Riesz derivative.
- —Feller derivative.
- —two-sided GL type Hilbert transform.With , we obtained the usual discrete-time formulation of the Hilbert transform [34].
- —forward Liouville anti-derivative.
- —Riesz potential.
- —Feller potental.
- —Hilbert transform.With , we obtained the usual formulation [35].
- Fourier transformationThis property has, as consequence, that
- EigenfunctionsLet Then
- Periodicity inThe UFD is periodic in with period 4
- Additivity and commutativity of the orders
- Existence of inverse derivativeWe defined the identity operatorFrom this definition and (9), the anti-derivative exists when and . Therefore,
2.2. Derivatives of Power Functions
- Causal −
- Even −
- Odd −
2.3. Formulation of the Diffusion Equation
3. A New Look at Entropy Computations
3.1. Main Entropies
- Shannon’s
- Tsallis’We particularize for giving
- Rényi’sSimilarly, for , we get
3.2. The Entropy of Some Special Distributions
3.2.1. The Gaussian
3.2.2. The Extreme Fractional Space
3.2.3. The Stable Distributions
3.2.4. The Generalised Distributions
4. Equation Solutions
4.1. Some Preliminary Results
4.2. The Neutral Case ()
4.2.1.
4.2.2. The Entropy of the Case
4.2.3. The Case: There Is No Paradox
4.3. Time-Dominant Case ()
4.4. Space-Dominant Case ()
5. Discussion and Conclusions
Funding
Conflicts of Interest
Abbreviations
BLT | Bilateral Laplace transform |
FT | Fourier transform |
GL | Grünwald–Letnikov |
IC | Initial conditions |
LT | Laplace transform |
UFD | Unified fractional derivative |
References
- Bochner, S. Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 1949, 35, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Povstenko, Y. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Springer: Basel, Switzerland, 2015. [Google Scholar]
- Bagley, R.L.; Torvik, P.J. Fractional calculus—A different approach to the analysis of viscoelastically damped structures. AIAA J. 1983, 21, 741–748. [Google Scholar] [CrossRef]
- Balakrishnan, V. Anomalous diffusion in one dimension. Phys. A Stat. Mech. Its Appl. 1985, 132, 569–580. [Google Scholar] [CrossRef]
- Wyss, W. The fractional diffusion equation. J. Math. Phys. 1986, 27, 2782–2785. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Mainardi, F. The time fractional diffusion-wave equation. Radiophys. Quantum Electron. 1995, 38, 13–24. [Google Scholar] [CrossRef]
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Gorenflo, R.; Mainardi, F. Fractional calculus and stable probability distributions. Arch. Mech. 1998, 50, 377–388. [Google Scholar]
- Gorenflo, R.; Mainardi, F.; Raberto, M.; Scalas, E. Fractional diffusion in finance: Basic theory. A Review Paper Based on a Talk Given by F. Mainardi at MDEF2000. In Proceedings of the Workshop ‘Modelli Dinamici in Economia e Finanza’, Urbino, Italy, 20–30 September 2000. [Google Scholar]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; de Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Nolan, J.P. Univariate Stable Distributions; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Nonnenmacher, T.F. Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys. 2002, 284, 67–90. [Google Scholar] [CrossRef]
- Magin, R.L.; Ingo, C. Entropy and Information in a Fractional Order Model of Anomalous Diffusion. IFAC Proc. Vol. 2012, 45, 428–433. [Google Scholar] [CrossRef]
- Luchko, Y. Anomalous Diffusion: Models, Their Analysis, and Interpretation. In Advances in Applied Analysis; Rogosin, S.V., Koroleva, A.A., Eds.; Springer: Basel, Switzerland, 2012; pp. 115–145. [Google Scholar]
- Tawfik, A.M.; Fichtner, H.; Elhanbaly, A.; Schlickeiser, R. Analytical solution of the space–time fractional hyperdiffusion equation. Phys. A Stat. Mech. Its Appl. 2018, 510, 178–187. [Google Scholar] [CrossRef]
- Hanyga, A.; Magin, R.L. A new anisotropic fractional model of diffusion suitable for applications of diffusion tensor imaging in biological tissues. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140319. [Google Scholar] [CrossRef]
- Baeumer, B.; Meerschaert, M.M.; Nane, E. Space–time Duality for Fractional Diffusion. J. Appl. Probab. 2009, 46, 1100–1115. [Google Scholar] [CrossRef]
- Kelly, J.F.; Meerschaert, M.M. Space-time duality and high-order fractional diffusion. Phys. Rev. E 2019, 99, 022122. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.H.; Essex, C.; Schulzky, C. Fractional diffusion and entropy production. J. Non-Equilib. Thermodyn. 1998, 23, 166–175. [Google Scholar] [CrossRef]
- Prehl, J.; Essex, C.; Hoffmann, K. The superdiffusion entropy production paradox in the space-fractional case for extended entropies. Phys. A Stat. Mech. Its Appl. 2010, 389, 215–224. [Google Scholar] [CrossRef]
- Luchko, Y. Entropy production rates of the multi-dimensional fractional diffusion processes. Entropy 2019, 21, 973. [Google Scholar] [CrossRef] [Green Version]
- Prehl, J.; Boldt, F.; Hoffmann, K.H.; Essex, C. Symmetric fractional diffusion and entropy production. Entropy 2016, 18, 275. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.H.; Essex, C.; Prehl, J. A unified approach to resolving the entropy production paradox. J. Non-Equilib. Thermodyn. 2012, 37, 393–412. [Google Scholar] [CrossRef]
- Kulmus, K.; Essex, C.; Prehl, J.; Hoffmann, K.H. The entropy production paradox for fractional master equations. Phys. A Stat. Mech. Its Appl. 2019, 525, 1370–1378. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.A.T. Fractional Derivatives: The Perspective of System Theory. Mathematics 2019, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Essex, C.; Schulzky, C.; Franz, A.; Hoffmann, K.H. Tsallis and Rényi entropies in fractional diffusion and entropy production. Phys. A Stat. Mech. Its Appl. 2000, 284, 299–308. [Google Scholar] [CrossRef]
- Conrad, K. Probability distributions and maximum entropy. Entropy 2004, 6, 10. [Google Scholar]
- Machado, J.T. Fractional Order Generalized Information. Entropy 2014, 16, 2350–2361. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.M.; Machado, J.A.T. A Review of Fractional Order Entropies. Entropy 2020, 22, 1374. [Google Scholar] [CrossRef]
- Proakis, J.G.; Manolakis, D. Digital Signal Processing: Principles, Algorithms, and Applications; Prentice-Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Roberts, M.J. Signals and Systems: Analysis Using Transform Methods and Matlab; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Ortigueira, M.D. Two-sided and regularized Riesz-Feller derivatives. Math. Model. Methods Appl. Sci. 2021, 44, 8057–8069. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Riesz Potential Operators and Inverses via Fractional Centred Derivatives. Int. J. Math. Math. Sci. 2006, 2006, 12. [Google Scholar] [CrossRef]
- Ortigueira, M. Fractional central differences and derivatives. J. Vib. Control 2008, 14, 1255–1266. [Google Scholar] [CrossRef]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos Interdiscip. J. Nonlinear Sci. 1997, 7, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Coito, F.J. System initial conditions vs derivative initial conditions. Comput. Math. Appl. 2010, 59, 1782–1789. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Machado, J.T. Revisiting the 1D and 2D Laplace Transforms. Mathematics 2020, 8, 1330. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2014. [Google Scholar]
- Uchaikin, V.V.; Zolotarev, V.M. Chance and Stability; de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Luchko, Y. Wave–diffusion dualism of the neutral-fractional processes. J. Comput. Phys. 2015, 293, 40–52. [Google Scholar] [CrossRef]
- Henrici, P. Applied and Computational Complex Analysis; Wiley-Interscience: Hoboken, NJ, USA, 1991; Volume 2. [Google Scholar]
- Papoulis, A. The Fourier Integral and Its Applications; McGraw-Hill: New York, NY, USA, 1962; Volume 18, pp. 62–63. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortigueira, M.D. An Entropy Paradox Free Fractional Diffusion Equation. Fractal Fract. 2021, 5, 236. https://doi.org/10.3390/fractalfract5040236
Ortigueira MD. An Entropy Paradox Free Fractional Diffusion Equation. Fractal and Fractional. 2021; 5(4):236. https://doi.org/10.3390/fractalfract5040236
Chicago/Turabian StyleOrtigueira, Manuel Duarte. 2021. "An Entropy Paradox Free Fractional Diffusion Equation" Fractal and Fractional 5, no. 4: 236. https://doi.org/10.3390/fractalfract5040236
APA StyleOrtigueira, M. D. (2021). An Entropy Paradox Free Fractional Diffusion Equation. Fractal and Fractional, 5(4), 236. https://doi.org/10.3390/fractalfract5040236