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Abstract: Our starting point is the n-dimensional time-space-fractional partial differential equation
(PDE) with the Caputo time-fractional derivative of order β, 0 < β < 2 and the fractional spatial
derivative (fractional Laplacian) of order α, 0 < α ≤ 2. For this equation, we first derive some integral
representations of the fundamental solution and then discuss its important properties including
scaling invariants and non-negativity. The time-space-fractional PDE governs a fractional diffusion
process if and only if its fundamental solution is non-negative and can be interpreted as a spatial
probability density function evolving in time. These conditions are satisfied for an arbitrary dimension
n ∈ N if 0 < β ≤ 1, 0 < α ≤ 2 and additionally for 1 < β ≤ α ≤ 2 in the one-dimensional case. In all
these cases, we derive the explicit formulas for the Shannon entropy and for the entropy production
rate of a fractional diffusion process governed by the corresponding time-space-fractional PDE. The
entropy production rate depends on the orders β and α of the time and spatial derivatives and on
the space dimension n and is given by the expression β n

α t , t being the time variable. Even if it is an
increasing function in β, one cannot speak about any entropy production paradoxes related to these
processes (as stated in some publications) because the time-space-fractional PDE governs a fractional
diffusion process in all dimensions only under the condition 0 < β ≤ 1, i.e., only the slow and the
conventional diffusion can be described by this equation.

Keywords: time-space-fractional diffusion equation; fundamental solution; Mellin-Barnes integral;
Shannon entropy; entropy production rate

1. Introduction

One of the most prominent and broadly-recognized applications of Fractional Calculus (FC)
is for description of the anomalous transport processes [1–4]. The basic FC model for the slow
anomalous diffusion is the time-fractional partial differential equation (PDE) that interpolates between
the time-independent Poisson equation and the diffusion equation. In Reference [5], the fundamental
solution to the time-fractional diffusion equation with the Caputo fractional derivative of order
β ∈ (0, 1) and the spatial Laplace operator was shown to be non-negative and normalized. Thus it
can be interpreted as a spatial probability density function evolving in time that provides a strong
justification for the time-fractional diffusion equation with the time derivative of order β ∈ (0, 1) to
act as a model for a diffusion process. This process is anomalous and slow because the mean squared
displacement of the diffusing particle behaves as cβ tβ, β ∈ (0, 1) in contrast to the linear dependence
of the mean squared displacement on time in the case of the conventional diffusion.

In analogy to the case of the slow anomalous diffusion, some FC models for the supper-diffusion
(fast diffusion) processes were introduced in form of the time-, space, or time-space-fractional PDEs.
In particular, the time-fractional diffusion-wave PDE with the Caputo fractional derivative of order
β ∈ (1, 2] and the spatial Laplace operator, which interpolates between the diffusion equation and
the wave equation, was often discussed in the literature in connection with the supper-diffusion.
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However, it turned out that the fundamental solution to the n-dimensional time-space-fractional
PDE with the Caputo time-fractional derivative of the order β, 0 < β < 2 and the fractional spatial
derivative (fractional Laplacian) of the order α, 0 < α ≤ 2 fails to be non-negative for n ≥ 2 for all
1 < β < 2, 0 < α ≤ 2 [6]. This means that for n ≥ 2 this equation with the time-fractional derivative of
order β greater than one cannot serve as a model for any diffusion process but rather as a model for
the damped waves propagation [7,8].

However, the situation in the one-dimensional case (n = 1) is very different from the one
in the multi-dimensional case (n ≥ 2). As shown in Reference [9], the fundamental solution to
the one-dimensional time-space-fractional PDE with the time-fractional Caputo derivative of order
β ∈ (0, 2] and the fractional spatial Riesz–Feller derivative of order α ∈ (0, 2] and skewness θ

(|θ| ≤ min {α, 2 − α}) is non-negative both for 0 < β ≤ 1, 0 < α ≤ 2 and for 1 < β ≤ α ≤ 2,
i.e., this equation can describe some diffusion processes also for β greater than one. The entropy
and the entropy production rates of the processes governed by the one-dimensional time-fractional
diffusion equation with the Caputo time-fractional derivative of order β ∈ [1, 2] and the second spatial
derivative (Laplace operator in the one-dimensional case) were discussed in [10,11]. According to
References [10,11], the entropy production rate of the time-fractional diffusion equation increases with
increasing of β from one (diffusion) to two (wave propagation) that results in the so called entropy
production paradox. Many efforts were put into "resolving" of this paradox (see e.g., [12] and references
therein). However, as mentioned above, this paradox does not appear in the dimensions two and
three, i.e., in the cases that are important for applications. The paradox in the one-dimensional case is
rather a mathematical caprice than a physical phenomenon and thus it has only very restricted—if
any—relevance for applications.

In the literature, the entropy and the entropy production rates of the processes governed by some
other particular cases of the time-space-fractional PDE with the Caputo time-fractional derivative of
order β, 0 < β < 2 and the fractional spatial derivative (fractional Laplacian) of order α, 0 < α ≤ 2
have been considered. In References [13,14], the case of the one-dimensional space-fractional PDE
with the first-order time derivative and fractional spatial derivative of order α, α ∈ (0, 2] was analyzed
in detail. In Reference [15], a closed form formula for the Shannon entropy of the fundamental
solution to the one-dimensional neutral-fractional PDE with the fractional derivatives of the same
order α, 1 ≤ α ≤ 2 both in space and in time, was derived. The n-dimensional case of this equation
was analyzed in Reference [7]. In Reference [16], it was shown that the entropy production rate of the
fundamental solution to the one-dimensional α-fractional diffusion equation is exactly the same as in
the case of the conventional diffusion equation. The α-fractional diffusion equation is a PDE with the
Caputo time-fractional derivative of order α, 0 < α ≤ 1 and the fractional spatial derivative of order
2α. Thus the quotient of the derivatives orders is one half, i.e., exactly the same as for the conventional
diffusion equation. The case of the two-dimensional α-fractional diffusion equation was considered in
Reference [17]. In the n-dimensional case, the entropy of the processes governed by the α-fractional
diffusion equation was discussed in Reference [18].

The rest of the paper is organized as follows. In Section 2, we first remind the readers of
derivation of the fundamental solution to the n-dimensional time-space-fractional PDE with the
Caputo time-fractional derivative of order β, 0 < β < 2 and the fractional spatial derivative (fractional
Laplacian) of order α, 0 < α ≤ 2 and then mention its properties that are used in further discussions.
Section 3 contains the main results and presents a derivation of the closed form formulas for the
Shannon entropy and the entropy production rates of the fractional diffusion processes that are
governed by those n-dimensional time-space-fractional PDEs that possess non-negative fundamental
solutions (0 < β ≤ 1, 0 < α ≤ 2 for n ∈ N or 1 < β ≤ α ≤ 2 for n = 1). The last section is dedicated to
the conclusions.
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2. Fundamental Solution to the Time-Space-Fractional PDE

In this section, for the sake of the reader’s convenience we provide a sketch of derivation of
the Mellin-Barnes integral representation of the fundamental solution to the time-space-fractional
PDE with the Caputo time-fractional derivative and the fractional Laplacian (see Reference [19] for
details). This representation is valid for the derivatives orders β ∈ (0, 2), α ∈ (0, 2] [20]. However,
our derivation method works only in the case β ∈ (0, 2), α ∈ (1, 2] and thus we first suppose
these conditions to hold true and consider the multi-dimensional time-space-fractional PDE in the
following form:

Dβ
t u(x, t) + (−∆)

α
2 u(x, t) = 0, x ∈ Rn, t > 0, 0 < β < 2, 1 < α ≤ 2, (1)

where Dβ
t is the Caputo time-fractional derivative of the order β and (−∆)

α
2 is the fractional Laplacian.

The Caputo time-fractional derivative of order β > 0 is defined by the formula

Dβ
t u(x, t) =

(
In−β
t

∂nu
∂tn

)
(t), n− 1 < β ≤ n, n ∈ N , (2)

where Iγ
t is the Riemann–Liouville fractional integral given by

(Iγ
t u)(t) =

 1
Γ(γ)

∫ t
0 (t− τ)γ−1u(x, τ) dτ for γ > 0,

u(x, t) for γ = 0.

For a sufficiently well-behaved function f : Rn → R and for 0 < α < m, m ∈ N and x ∈ Rn, the
fractional Laplacian can be represented as a hypersingular integral [21]:

(−∆)
α
2 f (x) =

1
dn,m(α)

∫
Rn

(
∆m

h f
)
(x)

|h|n+α
dh (3)

with the suitably defined finite differences operator
(
∆m

h f
)
(x) and the normalization constant dn,m(α).

The operator
(
∆m

h f
)
(x) can be chosen either in the non-centered form

(∆m
h f ) (x) =

m

∑
k=0

(−1)k
(

m
k

)
f (x− h)

or in the centered form:

(∆m
h f ) (x) =

m

∑
k=0

(−1)k
(

m
k

)
f (x− (m/2− k)h).

The normalization constant dn,m(α) is given by the formula

dn,m(α) =
π1+n/2 Am(α)

2αΓ(1 + α/2)Γ((n + α)/2) sin(πα/2)
,

where

Am(α) =
m

∑
k=0

(−1)k−1
(

m
k

)
kα

in the case of the non-centered difference operator and

Am(α) = 2
[m/2]

∑
k=0

(−1)k−1
(

m
k

)
(m/2− k)α



Entropy 2019, 21, 973 4 of 12

in the case of the centered difference operator. The representation (3) of the fractional Laplacian does
not depend on m, m ∈ N provided α < m and is valid with the centered differences operator for
all α > 0 and even m or with the non-centered differences operator for all α > 0 except of the case
α = 1, 3, 5 . . . , 2[m/2]− 1.

It is worth mentioning that the fractional Laplacian (−∆)
α
2 can be also interpreted as a

pseudo-differential operator with the symbol |κ|α ([21,22]):(
F (−∆)

α
2 f
)
(κ) = |κ|α(F f )(κ) , (4)

where (F f )(κ) is the Fourier transform of a function f at the point κ ∈ Rn defined by

(F f )(κ) = f̂ (κ) =
∫
Rn

eiκ·x f (x) dx . (5)

In what follows we consider an initial-value problem for the Equation (1) with the Dirichlet initial
conditions. For 0 < β ≤ 1, we pose an initial condition in the form

u(x, 0) = ϕ(x) , x ∈ Rn. (6)

If 1 < β < 2, the second initial condition is added:

∂u
∂t

(x, 0) = 0 , x ∈ Rn. (7)

Because the initial-value problem (1), (6) (or (1), (6)–(7), respectively) is a linear one, its solution
can be represented in the form

u(x, t) =
∫
Rn

Gα,β,n(x− ζ, t)ϕ(ζ) dζ,

where Gα,β,n is the fundamental solution, i.e., the solution to the problem (1), (6) with the
initial condition

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

or to the problem (1), (6)–(7) with the initial conditions

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

and
∂u
∂t

(x, 0) = 0 , x ∈ Rn,

for 0 < β ≤ 1 or 1 < β < 2, respectively, with δ being the Dirac delta function.
To derive a close form formula for the fundamental solution, we apply the Fourier transform (5)

with respect to the spatial variable to the Equation (1) and to the initial conditions (6) with ϕ(x) =
∏n

i=1 δ(xi) and (7) (in the case β > 1) and get the fractional ordinary differential equation (ODE)

Dβ
t Ĝα,β,n(κ, t) + |κ|αĜα,β,n(κ, t) = 0, (8)

and the initial conditions
Ĝα,β,n(κ, 0) = 1 (9)
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in the case 0 < β ≤ 1 or the initial conditions

Ĝα,β,n(κ, 0) = 1,
∂

∂t
Ĝα,β,n(κ, 0) = 0 (10)

in the case 1 < β < 2.
In both cases, the unique solution to the initial-value problem for the fractional ODE (8) with the

initial conditions (9) or (10), respectively, has the form [23]:

Ĝα,β,n(κ, t) = Eβ

(
−|κ|αtβ

)
, (11)

where the Mittag-Leffler function Eβ(z) is defined as follows:

Eβ(z) =
∞

∑
n=0

zn

Γ(1 + β n)
, β > 0, z ∈ C. (12)

Because of the asymptotic formula [24]

Eβ(−x) = −
m

∑
k=1

(−x)−k

Γ(1− βk)
+ O(|x|−1−m), m ∈ N, x → +∞, 0 < β < 2, (13)

the right-hand side of the Equation (11) is from L1(Rn) as soon as α > 1. Thus for 1 < α ≤ 2, we can
apply the inverse Fourier transform to the Equation (11) and get the representation

Gα,β,n(x, t) =
1

(2π)n

∫
Rn

e−iκ·xEβ

(
−|κ|αtβ

)
dκ , x ∈ Rn , t > 0 . (14)

Because the function Eβ

(
−|κ|αtβ

)
is a radial function, we can rewrite the Equation (14) in the form [21]

Gα,β,n(x, t) =
|x|1− n

2

(2π)
n
2

∫ ∞

0
Eβ

(
−ταtβ

)
τ

n
2 J n

2−1(τ|x|) dτ , |x| 6= 0, (15)

whenever the integral at the right-hand side of (15) converges absolutely or at least conditionally.
In this formula, Jν denotes the Bessel function with the index ν.

In the case |x| = 0 (x = (0, . . . , 0)), the formula (14) takes the form

Gα,β,n(0, t) =
1

(2π)n

∫
Rn

Eβ(−|κ|αtβ)dκ

that can be rewritten as

Gα,β,n(0, t) =
1

(2π)n
2π

n
2

Γ( n
2 )

∫ ∞

0
Eβ(−ταtβ) τn−1 dτ (16)

due to the well-known formula for the multi-dimensional integrals of the radial functions [21]. The
integral at the right-hand side of (16) is convergent under the condition 0 < n < α. Thus the
fundamental solution Gα,β,n is finite at the point |x| = 0 only in the one-dimensional case (remember
the condition 1 < α ≤ 2) and has an integrable singularity for other dimensions.

Let us now consider the case x 6= 0 and apply the variables substitution u = ταtβ in the integral
at the right-hand side of the integral representation (15) to get the expression

Gα,β,n(x, t) = t−
βn
α Lα,β,n(z), z =

|x|
2t

β
α

(17)
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with the auxiliary function

Lα,β,n(z) =
(2z)1− n

2

α(2π)
n
2

∫ ∞

0
u

n
2α +

1
α−1Eβ(−u)J n

2−1

(
2z u

1
α

)
du. (18)

This representation will be used in the further discussions of the properties of Gα,β,n.
Now we employ the technique of the Mellin integral transform to deduce a Mellin-Barnes

representation of the fundamental solution Gα,β,n(x, t). Recall that the Mellin integral transform of a
function f is defined by the formula

f ∗(s) = (M f (τ))(s) =
∫ ∞

0
f (τ)τs−1 dτ , γ1 < <(s) < γ2 (19)

and the inverse Mellin integral transform has the form

f (τ) = (M−1 f ∗(s))(τ) =
1

2πi

∫ γ+i∞

γ−i∞
f ∗(s)τ−s ds , τ > 0 , γ1 < <(s) = γ < γ2 . (20)

If we denote by M←→ the juxtaposition of a function f with its Mellin transform f ∗ then the convolution
theorem for the Mellin integral transform reads as∫ ∞

0
f1(τ) f2

( y
τ

) dτ

τ

M←→ f ∗1 (s) f ∗2 (s) . (21)

As we can see, the integral at the right-hand side of the Equation (15) can be interpreted as the
Mellin convolution of the functions

f1(τ) = Eβ(−τα tβ) and f2(τ) =
|x|−n

(2π)
n
2

τ−
n
2−1 J n

2−1

(
1
τ

)

evaluated at the point y = 1
|x| .

By using the Mellin integral transform of the Mittag-Leffler function [25]

Eβ(−τ)
M←→ Γ(s)Γ(1− s)

Γ(1− βs)
, 0 < <(s) < 1, 0 < β < 2,

the Mellin integral transform of the Bessel function [25]

Jν(2
√

τ)
M←→ Γ(ν/2 + s)

Γ(ν/2 + 1− s)
, −<(ν/2) < <(s) < 3/4,

and some elementary properties of the Mellin integral transform [25,26], we arrive at the formulas:

f ∗1 (s) =
t−

β
α s

α

Γ( s
α )Γ(1−

s
α )

Γ(1− β
α s)

, 0 < <(s) < α ,

f ∗2 (s) =
|x|−n

(2π)
n
2

(
1
2

)− n
2 +s Γ

( n
2 −

s
2
)

Γ
( s

2
) ,

n
2
− 1

2
< <(s) < n .

Then the Mellin convolution theorem (21) and the Equation (20) for the inverse Mellin transform
provide us with the following Mellin-Barnes integral representation of the fundamental solution Gα,β,n:

Gα,β,n(x, t) =
1
α

|x|−n

π
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( n

2 −
s
2
)

Γ
( s

α

)
Γ
(
1− s

α

)
Γ
(

1− β
α s
)

Γ
( s

2
)

(
2t

β
α

|x|

)−s

ds , (22)
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where n
2 −

1
2 < γ < min(α, n). The variables substitution s→ n− s in the integral at the right-hand

side of (22) leads to an equivalent representation

Gα,β,n(x, t) =
1
α

t−
βn
α

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
)
(
|x|
2t

β
α

)−s

ds (23)

with max(n− α, 0) < γ < n.
Comparing the last formula with the expression (17), we get the following Mellin-Barnes

representation of the auxiliary function Lα,β,n:

Lα,β,n(z) =
1

α (4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
) z−sds , (24)

where the parameter γ satisfies the inequalities max(n− α, 0) < γ < n. Thus we can determine the
Mellin integral transform of the function Lα,β,n:

Lα,β,n(τ)
M←→ 1

α (4π)
n
2

Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
) (25)

that is valid if max(n− α, 0) < <(s) < n.
It is worth mentioning that both the representation (17) and the Equation (25) will play a decisive

role for derivation of the closed form formulas for the Shannon entropy and the entropy production rate
of the fractional diffusion processes. In particular, the representation (17) shows that the fundamental
solution Gα,β,n depends on the similarity variable z = |x|

2t
β
α

that in fact determines the form of the

entropy production rate of the fractional diffusion processes.
Another important point is the non-negativity property of the fundamental solution. The

time-space-fractional PDE governs a fractional diffusion process if and only if its fundamental solution
is non-negative and can be interpreted as a spatial probability density function (pdf) evolving in
time. As recently shown in [6], these conditions are satisfied for an arbitrary dimension n ∈ N if
0 < β ≤ 1, 0 < α ≤ 2 and additionally for 1 < β ≤ α ≤ 2 in the one-dimensional case. In the next
section, we restrict ourselves only to these cases and derive the explicit formulas for the Shannon
entropy and for the entropy production rate of the fractional diffusion processes governed by the
corresponding time-space-fractional PDEs.

For further properties and numerous particular cases of the fundamental solution Gα,β,n we refer
the interested readers to [19].

3. The Entropy Production Rates of the Fractional Diffusion Processes

In this section, we treat the fundamental solution Gα,β,n as a probability density function (with
respect to the spatial variables) evolving in time (as mentioned above, it is the case for an arbitrary
dimension n ∈ N if 0 < β ≤ 1, 0 < α ≤ 2 and additionally for 1 < β ≤ α ≤ 2 in the one-dimensional
case) and in particular derive the closed form formulas for the entropy and the entropy production
rate of the underlying stochastic processes.

For an n-dimensional continuous random variable evolving in time with the probability density
function p(x, t), x ∈ Rn, t > 0, the Shannon entropy is defined by the formula

S(p, t) = −
∫
Rn

p(x, t) ln(p(x, t)) dx , (26)
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and the entropy production rate by its derivative

R(p, t) =
d
dt

S(p, t) . (27)

The entropy production rate is an important characteristic of a stochastic process that provides a
measure of its irreversibility. For the conventional diffusion process (fundamental solution to the
n-dimensional diffusion equation)

G2,1,n(x, t) =
1

(
√

4πt)n
exp

(
−|x|

2

4t

)
(28)

the Shannon entropy is given by the formula

S(G2,1,n, t) =
n
2
(ln(4πt) + 1). (29)

The entropy production rate of the n-dimensional diffusion process is obtained by differentiation of
the right-hand side of the Equation (29):

R(G2,1,n, t) =
d
dt

S(G2,1,n, t) =
n
2t

. (30)

The entropy production rate R(G2,1,n, t) is strictly positive for any t > 0 and thus the corresponding
diffusion process can be classified as irreversible. Moreover, R(G2,1,n, t) decreases with time and goes
to zero for t→ +∞ that can be interpreted in the sense that the diffusion process tends to a uniform
distribution of the particles for t→ +∞.

Now let us proceed with calculation of the Shannon entropy of the fractional diffusion processes
governed by the multi-dimensional time-space-fractional diffusion Equation (1) under the restrictions
on the orders of the fractional derivatives that ensure the non-negativity of its fundamental solution
(see the previous section). To do this, we employ the representation (17) of its fundamental solution in
terms of the auxiliary function Lα,β,n.

Substituting (17) into (26) and using the well-known formula for the multi-dimensional integrals
of the radial functions ([21])

∫
Rn

f (|x|)dx =
2π

n
2

Γ( n
2 )

∫ ∞

0
τn−1 f (τ)dτ, (31)

we obtain the following chain of equalities:

S(Gα,β,n, t) = −
∫
Rn

t−
βn
α Lα,β,n

(
x

2tβ/α

)
ln
(

t−
βn
α Lα,β,n

(
x

2tβ/α

))
dx

= − 2π
n
2

Γ
( n

2
)

t
βn
α

∫ ∞

0
τn−1Lα,β,n

(
τ

2tβ/α

) [
− βn

α
ln(t) + ln

(
Lα,β,n

(
τ

2tβ/α

))]
dτ

=
2π

n
2

Γ
( n

2
)

t
βn
α

βn
α

ln(t)
∫ ∞

0
τn−1Lα,β,n

(
τ

2tβ/α

)
dτ

− 2π
n
2

Γ
( n

2
)

t
βn
α

∫ ∞

0
τn−1Lα,β,n

(
τ

2tβ/α

)
ln
(

Lα,β,n

(
τ

2tβ/α

))
dτ.
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In the last two integrals, we employ the variables substitution τ
2tβ/α → τ and arrive at the formula

S(Gα,β,n, t) =
2n+1π

n
2

Γ
( n

2
) βn

α
ln(t)

∫ ∞

0
τn−1Lα,β,n (τ) dτ

− 2n+1π
n
2

Γ
( n

2
) ∫ ∞

0
τn−1Lα,β,n (τ) ln

(
Lα,β,n (τ)

)
dτ

that can be represented in the form

S(Gα,β,n, t) = Aα,β,n ln t + Bα,β,n , (32)

where the (time-independent) constants Aα,β,n and Bα,β,n are given by the expressions

Aα,β,n =
2n+1π

n
2

Γ
( n

2
) βn

α

∫ ∞

0
τn−1Lα,β,n (τ) dτ, (33)

Bα,β,n = −2n+1π
n
2

Γ
( n

2
) ∫ ∞

0
τn−1Lα,β,n (τ) ln

(
Lα,β,n (τ)

)
dτ (34)

in terms of the auxiliary function Lα,β,n.
The representation (32) allows us to immediately calculate the entropy production rate of the

n-dimensional fractional diffusion process governed by the time-space-fractional diffusion equation (1):

R(Gα,β,n, t) =
d
dt

S(Gα,β,n, t) =
Aα,β,n

t
, (35)

where the constant Aα,β,n is given by (33).
Surprisingly, the integral at the right-hand side of the Equation (33) can be calculated in explicit

form. Indeed, this integral can be interpreted as the Mellin integral transform of the auxiliary function
Lα,β,n at the point s = n. However, the Equation (25) for the Mellin integral transform of Lα,β,n was
derived under the condition n−min(α, n) < Res < n and cannot be directly used at the point s = n.
Thus we calculate the integral at the right-hand side of the Equation (33) as the limit of the right-hand
side of the Equation (25) as s→ n and get the following chain of equalities:∫ ∞

0
τn−1Lα,β,n (τ) dτ = lim

s→n
L∗α,β,n(s)

= lim
s→n

1

α (4π)
n
2

Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
)

= lim
s→n

1

α (4π)
n
2

Γ
( n

2
)

Γ
( n−s

α

)
Γ(1)

Γ(1)Γ
( n−s

2
)

= lim
s→n

1

α (4π)
n
2

Γ
( n

2
) n−s

2
n−s
2α

=
Γ
( n

2
)

2n+1π
n
2

.

The second to last equality is a simple consequence of the formula for the residual of the
Gamma-function at the point s = 0:

ress=0Γ(s) = 1.
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Combining now the Equation (33) with the integral

∫ ∞

0
τn−1Lα,β,n (τ) dτ =

Γ
( n

2
)

2n+1π
n
2

,

we arrive at the following formula for the constant Aα,β,n:

Aα,β,n =
2n+1π

n
2

Γ
( n

2
) βn

α

Γ
( n

2
)

2n+1π
n
2
=

βn
α

. (36)

Thus the entropy production rate of the n-dimensional fractional diffusion process governed by
the time-space-fractional diffusion Equation (1) can be represented in the following simple form:

R(Gα,β,n, t) =
β n
α t

. (37)

As in the case of the conventional diffusion, the entropy production rate of the n-dimensional
fractional diffusion process is non-negative and decreasing with time. Moreover, in the general case
(for any dimension n ∈ N), the entropy production rate is an increasing function of the order of the
time-fractional derivative β for β ∈ (0, 1] as expected from the physical and probabilistic interpretations
of the slow and conventional diffusion. Because β is restricted to the interval (0, 1] (with the only
exception for n = 1), there exists no entropy production rate paradox.

Another important finding follows from comparison of the entropy production rates of the
n-dimensional conventional diffusion (Equation (30)) and of the n-dimensional fractional diffusion
process (Equation (37)). They are equal in the case

β

α
=

1
2

, (38)

i.e., in the case of the α-fractional diffusion equation that was analyzed in detail in [16–18]. Thus
the α-fractional diffusion equation can be treated as a “right fractionalization” of the conventional
diffusion equation.

As one can see from the Equation (37), the entropy production rates and thus other properties
of the fractional diffusion processes depend on the quotient β

α of the orders of the time- and
space-fractional derivatives. Of course, it is a direct consequence of the form of the similarity variable
in the representation (17) of the fundamental solution Gα,β,n in terms of the auxiliary function Lα,β,n.
From the other hand, the expression for the similarity variable is determined by the symmetries of the
time-space-fractional PDE (1) with respect to the group of its scaling transformations (see [27,28] for
discussion of the relevant particular cases and [29] for the general theory of the group invariants for
the fractional PDEs).

4. Conclusions

In this paper, we derived and analyzed the fundamental solution to the n-dimensional
time-space-fractional PDE with the Caputo time-fractional derivative of the order β, 0 < β < 2
and the fractional spatial derivative (fractional Laplacian) of the order α, 0 < α ≤ 2. This equation
governs a fractional diffusion process if and only if its fundamental solution is non-negative and can
be interpreted as a spatial pdf evolving in time that is the case for an arbitrary dimension n ∈ N if
0 < β ≤ 1, 0 < α ≤ 2 and additionally for 1 < β ≤ α ≤ 2 if n = 1. In all these cases, we derived an
explicit formula for the entropy production rate of the fractional diffusion processes. It turned out
that the rate depends on the orders β and α of the fractional time and spatial derivatives and on the
dimension n and is given by the expression β n

α t , t being the time variable.
The entropy production rate is an increasing function in β. However, one cannot speak

about any entropy production paradoxes related to the fractional diffusion processes because the
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time-space-fractional PDE governs a fractional diffusion process in all dimensions only under the
condition 0 < β ≤ 1, i.e., only in the cases of the slow and the conventional diffusion.

Another important finding is that the entropy production rate of the α-fractional diffusion
equation (fractional PDE with the Caputo time-fractional derivative of order α, 0 < α ≤ 1 and
the fractional spatial derivative of order 2α) is equal to one of the conventional diffusion equations.
Thus the α-fractional diffusion equation can be treated as a “right fractionalization” of the conventional
diffusion equation.

It would be important to study the problems discussed in this paper for other types of the
fractional PDEs. In particular, the fractional diffusion equations with the Riesz–Feller fractional spatial
derivative and/or the Riemann–Liouville time-fractional derivative would be worth investigating.
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