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Abstract: In this study, a parametric intuitionistic fuzzy multi-objective fractional transportation
problem (PIF-MOFTP) is proposed. The current PIF-MOFTP has a single-scalar parameter in the
objective functions and an intuitionistic fuzzy supply and demand. Based on the (α, β)-cut concept a
parametric (α, β)-MOFTP is established. Then, a fuzzy goal programming (FGP) approach is utilized
to obtain (α, β)-Pareto optimal solution. We investigated the stability set of the first kind (SSFK)
corresponding to the solution by extending the Kuhn-Tucker optimality conditions of multi-objective
programming problems. An algorithm to crystalize the progressing SSFK for PIF-MOFTP as well as
an illustrative numerical example is presented.

Keywords: multi-objective programming; fractional transportation problem; intuitionistic fuzzy set;
parametric programming

1. Introduction

Transportation issues (TP) have been studied in various writings [1–7]. These issues
and their solution processes postulate a worthy task in logistics and supply chain organi-
zation for reducing expenses, further developing service quality, etc. [3,8]. Nonetheless,
TP is described by multiple, incommensurable, and clashing objective functions, being
known as the multi-objective transportation problem (MO-TP). Accordingly, in MO-TP,
the idea of an ideal solution offers spot to the idea of the best compromise solution or the
non-dominated solutions. Optimization of the ratio of two functions is called fractional
programming (ratio optimization) [7,9]. To be sure, in such circumstances, it is often a
question of optimizing a ratio of benefit/cost, stock/deals, specialist/patient, and so on,
subject to some constraints [7,9].

One of the significant issues looked at by specialists is that involving the exact values
of parameters [7]. In this way, this might involve thinking about vagueness, or specify-
ing the fundamental parameters of the model, which are the coefficients of the objective
function and the constrains [4,8]. Accordingly, it might be naturalistic to take the distinct
adjectival information on specialists and leaders about the parameters which can be ex-
emplified as fuzzy data [7,10]. Uncertainty may happen because of the accompanying
unrestrained factors. In this study the main hypotheses are that the transportation charge
has a parametric nature, and the supply and the demand parameters are intuitionistic
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fuzzy numbers (IFNs). The main hypotheses have not been presented in the literature, and
the basic question is how we can get the SSFK for such PIF-MOFTP.

2. Literature Review

The research on MO-TP is improved by fusing the diverse numerical models and
procedures. James et al. [11] examined transportation administration quality dependent
on data combination. A lot of examination that deals with transportation wellbeing
was created by Ergun et al. [12], Sheu and Chen [13]. Recently, MO-TP under different
circumstances has been discussed by Roy et al. [14,15], Roy and Mahapatra [16], Roy [17],
Maity and Roy [18,19].

Although fuzzy set theory (FST) is novel tool in handling uncertainties, it cannot
tackle special kinds of uncertainties, as it is difficult to depict the membership degree using
one specific value. To overcome the lack of knowledge of non-membership degrees, intu-
itionistic fuzzy set (IFS) was presented in 1986 by Atanassov [20] as an extension of FST. In
IFS, each element in a set is attached with two grades: membership and non-membership,
where the sum of these two grades is restricted to less or equal to one. Moreover, many
creators have been utilized IFS for addressing various sorts of TPs [21,22]. The study of
MO-TP with vague numbers has been presented by Ammar and Youness [1]. The fuzzy
programming strategy was acquainted with tackle MO-TP with various non-linear mem-
bership functions [23]. IFS has additionally been utilized by several scientists to tackle
different types of TPs [10,24]. One more strategy for thoroughly considering linear MO-
TPs with vague nature has been suggested by Gupta and Kumar [25]. Recently, MO-TP
under various types of uncertainty has been discussed by Roy and Mahapatra [16], Maity
and Roy [26], and Ebrahimnejad and Verdegay [10]. Mahajan and Gupta [27] proposed
a fully IF MO-TP utilizing various membership functions. Achievement stability set for
parametric linear FGP problems has been introduced by El Sayed and Farahat [28]. The
neutrosophic goal programming approach for solving the multi-objective fractional trans-
portation problem was introduced by Veeramani et al., [29]. Pramanik and Banerjee [30]
proposed a chance-constrained capacitated MO-TP with two fuzzy goals, and a consensus
solution was found. Edalatpanah [31] developed a nonlinear framework for neutrosophic
linear programming. Furthermore, Rizk-Allah et al. [32] developed a compromise solution
framework for the MO-TP based on the neutrosophic environment. A fuzzy approach us-
ing generalized dinkelbach’s algorithm for linear multi-objective fractional transportation
problem (MOFTP) has been presented by Cetin and Tiryaki [3]. A fuzzy mathematical
programming approach for solving fuzzy linear fractional programming problem has been
demonstrated by Veeramani and Sumathi [33]. El Sayed and Abo-Sinna [7] introduced the
intuitionistic fuzzy multi-objective fractional transportation problem (IF-MOFTP).

Parametric programming examines the impact of preordained continuous varieties in
the objective function coefficients and the right-hand side of the constraints on the ideal
solution [34–36]. In parametric analysis the objective function and the right-hand side
vectors are replaced with the parameterized function c(ϑ) and b(α, β), where ϑ and α, β
are the parameter of variation. The general idea of parametric analysis is to start with the
α-Pareto optimal solution at ϑ = ϑ∗, α = α∗, β = β∗. Then by applying KKT optimality
the SSFK is determined [35,37]. The concept of the stability set of the first kind (SSFK)
has been introduced by Osman [35], and extended by Saad [38], Saad and Hughes [39],
Osman et al. [36], Saad et al. [40].

In prior examinations, the MO-TP was created with the presumption that the supply,
demand, and cost boundaries were known. Nonetheless, applications, every one of the
parameters of the TP are not for the most part characterized definitively. It might have IF
values. Comparable contemplations might be taken for supply and demand parameters
in TP of this paper. Keeping this perspective, the primary commitments are concerned
with two unique viewpoints: one is to find a (α, β)-Pareto optimal solution for the PIF-
MOFTP, and another is to investigate the SSFK for PIF-MOFTP. First, based on the (α, β)-cut
methodology a parametric (α, β)-MOFTP is established. Then, A FGP approach is used to
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get (α, β)-Pareto optimal solution. Finally, the KKT optimality conditions applied to get the
SSFK. An algorithm to clarify the developed SSFK for PIF-MOFTP as well as an illustrative
numerical example are given.

The rest of this study is organized as follows: after the introduction and literature
review, Section 3 introduces some basic concepts. Modelling of the PIF-MOFTP is presented
in Section 4. Section 5 demonstrates the FGP methodology for tackling the PIF-MOFTP.
In the next section the SSFK is investigated. An algorithm for obtaining the SSFK for
PIF-MOFTP is introduced in Section 6. An illustrative example, discussion and limitations
is given in Section 7. This paper ends with some concluding remarks.

3. Preliminaries

This part presents the concept of IFS [20,21,41,42].

Definition 1. An IFS ÃI in X is a set of ordered triples ÃI =
{(

x, µÃI (x), vÃI (x)
)
|x ∈ X

}
,

where µÃI (x), vÃI (x) : X → [0, 1] are functions such that 0 ≤ µÃI (x) + vÃI (x) ≤ 1, ∀x ∈ X.
The value of µÃI (x) acts as the grade of membership and vÃI (x) acts as the grade of non-membership
of the element x ∈ X being in ÃI . h(x) = 1− µÃI (x)− vÃI (x) represents the grade of hesitation
for the element x in ÃI [20,41].

Definition 2. An IFN of the form ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
is said to be triangular IFN (TIFN)

with membership and non-membership functions defined as [41,43]:

µÃI (x) =


x−a1
a2−a1

, a1 ≤ x ≤ a2,
a3−x
a3−a2

, a2 ≤ x ≤ a3

0, otherwise
, (1)

νÃI (x) =


a2−x
a2−a1

a1 ≤ x ≤ a2
x−a2
a3−a2

a2 ≤ x ≤ a3

1 otherwise
, (2)

where x−a1
a2−a1

, and x−a2
a3−a2

are continuous monotone increasing functions, a3−x
a3−a2

and a2−x
a2−a1

are

continuous monotone decreasing functions. x−a1
a2−a1

, a3−x
a3−a2

, a2−x
a2−a1

and x−a2
a3−a2

are the left and
the right basis functions of the membership function and the non-membership function
(see Figure 1), respectively. a1 ≤ a1 ≤ a2 ≤ a3 ≤ a3 and 0 ≤ µÃI (x) + vÃI (x) ≤ 1, ∀ x ∈ X.
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Definition 3. A TIFNs ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
is assumed to be a non-negative TIFN iff,

−
a1 ≥ 0 [41,43].
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Definition 4. Two TIFNs ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
and ÃI =

(
b1, b2, b3;

−
b1, b2,

−
b3

)
are

equivalent to one another, ÃI = B̃I iff, ai = bi and
−
a i =

−
b i ∀ i = 1, 2, 3 [7,41,43].

Definition 5. (α, β)-cut of an IFS ÃI is defined by: ÃI
(α,β) = {x : µÃI (x) ≥ α, νÃI (x) ≤ β,

α + β ≤ 1, x ∈ X}; where α, β ∈ (0, 1].

Definition 6. (α, β)-cut of a TIFN ÃI =
(

a1, a2, a3;
−
a1, a2,

−
a3

)
is the set of all x whose degree of

membership is greater than or equal to α and degree of non-membership is less than or equal to β,
i.e., ÃI

(α,β) =
{

x : µÃI (x) ≥ α, νÃI (x) ≤ β, α + β ≤ 1, x ∈ X
}

.

The (α, β)-cut of a TIFN is shown in Figure 2, is defined as the crisp set of elements
x which belong to ÃI at least to the degree α and which does belong to ÃI at most to the
degree β.
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Now, µÃI (x) ≥ α⇒ x−a1
a2−a1

≥ α and a3−x
a3−a2

≥ α, or x ≥ a1 + α(a2 − a1) and x ≤ a3 −
α(a3 − a2) again, νÃI (x) ≤ β⇒ a2−x

a2−a1
≤ β and x−a2

a3−a2
≤ β, or x ≥ a2 − β(a2 − a1) and

x ≤ a2 + β(a3 − a2) [43]. Thus, referring to Figure 2 ÃI
(α,β) = [AL, AU ], where AL =

max{a1 + α(a2 − a1), a2 − β(a2 − a1)} and AU = min{a3 − α(a3 − a2), a2 + β(a3 − a2)}.

4. Mathematical Formulation

In genuine case TP, during the modeling process, the transportation parameters are
not precise on account of insufficient information the variance of the market situation. To
deal quantitatively with such unclear information, we deemed parametric IF-MOFTP in
which single-scalar parameter ϑ ∈ R in the objective functions and an intuitionistic fuzzy
supply and demand. Suppose that there are m sources and n destinations. Thus, modelling
of the parametric IF-MOFTP can be obtained as [3,7,9]:

Max Zq(x, ϑ) =
∑m

i=1 ∑n
j=1
(
cij + ϑωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 1, 2, . . . , Q, (3)

Subject to:
n

∑
j=1

xij ≤ ãI
i , i = 1, 2, . . . , m, (4)

m

∑
i=1

xij ≥ b̃I
j , j = 1, 2, . . . , n, (5)
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xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (6)

where c(q)ij =
(
cij + ϑωij

)(q) denotes the parametric profit gained from shipment of ith

source to jth destination. Also, d(q)ij denotes the expense per unit of shipment from ith

source to jth destination. δ(q), ρ(q) are some constant profit and cost, respectively. x(q)ij is

the quantity shipped from ith source to jth destination. ãI
i =

(
a1

i , a2
i , a3

i ; a1
i , a2

i , a3
i

)
stands for

the available intuitionistic fuzzy supply at ith source and b̃I
j =

(
b1

j , b2
j , b3

j ; b
1
j , b2

j , b
3
j

)
alludes

to the accessible intuitionistic fuzzy demand at jth destination. Further, we postulate that

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q) > 0, q = 1, 2, . . . , Q; ãI
i > 0I , b̃I

j > 0I , ∀ j;
(
cij + ϑωij

)(q)
>

0I , δ(q), ρ(q) > 0 for all i, j, and the gross supply is greater than or equal the gross
demand [3,7].

m

∑
i=1

(
ãI

i

)
(α,β)
≥

n

∑
j=1

(
b̃I

j

)
(α,β)

. (7)

The disparity (7) is considered as a necessary and sufficient condition for the existence
of a feasible solution to PIF-MOFTP.

For a certain degree of (α, β)-cut the PIF-MOFTP could be transformed into parametric
(α, β)-MOFTP as:

Max Zq(x, ϑ) =
∑m

i=1 ∑n
j=1
(
cij + ϑωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 12, . . . , Q, (8)

Subject to:
n

∑
j=1

xij ≤ (ai)(α,β) i = 1, 2, . . . , m, (9)

m

∑
i=1

xij ≥
(
bj
)
(α,β) j = 1, 2, . . . , n, (10)

xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (11)

aL
i ≤ (ai)(α,β) ≤ aU

i , i = 1, 2, . . . , m, (12)

bL
j ≤

(
bj
)
(α,β) ≤ bU

j , j = 1, 2, . . . , n. (13)

Based on the concept of a convex linear combination method proposed in [40] para-
metric (α, β)-MOFTP can be rewritten as:

Max Zq(x, ϑ) =
∑m

i=1 ∑n
j=1
(
cij + ϑωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 12, . . . , Q, (14)

Subject to:
n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i i = 1, 2, . . . , m, (15)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j j = 1, 2, . . . , n, (16)

xij ≥ 0, λ ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, (17)

Let M(α,β) denote the set of constraints in Equations (15)–(17), the parametric (α, β)-
MOFTP has an (α, β)-Pareto optimal solution x∗ij at ϑ∗.
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Definition 7. (α, β)-Pareto optimal solution. x∗ij ∈ M(α,β) is said to be an (α, β)-Pareto

optimal solution to (α, β)-MOFTP if and only if there does not exist another x
◦
ij ∈ M(α,β)

ai ∈ (ai)(α,β), bj ∈
(
bj
)
(α,β), such that Zq

(
x
◦
ij, ϑ∗

)
≥ Zq

(
x∗ij, ϑ∗

)
with at least one strict

inequality hold for q (q = 1, 2, . . . , Q).

5. FGP Methodology for PIF-MOFTP

In this section the FGP approach is applied to obtain the compromise solution of the
parametric (α, β)-MOFTP. The objective functions are modeled as fuzzy goals characterized
by its’ membership function µ(zq(x,ϑ∗)) [36,44–46]. The model formulation and solution

process are carried out at ϑ = ϑ*. The membership functions of the qth fuzzy goals [36,44],
is defined as:

µ(zq(x,ϑ∗)) =


1, i f Zq(x, ϑ∗) ≥ uq

∗,
Zq(x,ϑ∗)−gq

∗

uq∗−gq∗
, i f gq

∗ ≤ Zq(x, ϑ∗) ≤ uq
∗,

0, i f Zq(x, ϑ∗) ≤ gq
∗,

q = 1, 2, . . . , Q (18)

where uq
∗ = max Zq(x, ϑ∗), gq

∗ = min Zq(x, ϑ∗), and denotes the upper and lower
tolerance limit for the membership function of qth objective, respectively. In the FGP
approach, the most extensive level of membership is unity. So, the membership goals
having the aspired level unity follows as [44]:

µq
(
Zq(x, ϑ∗)

)
+ d−q − d+q = 1, q = 1, 2, . . . , Q, (19)

where d−q , d+q ≥ 0, with d−q × d+q = 0, denote the under- and over-deviations, respectively,
from the aspired levels [36,44]. The final FGP model of the parametric (α, β)-MOFTP can
be obtained as:

Min AF =
Q

∑
q=1

w−q d−q , (20)

Subject to:

Zq(x, ϑ∗)− gq
∗

uq∗ − gq∗
+ d−q − d+q = 1, q = 1, 2, . . . , Q, (21)

n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i i = 1, 2, . . . , m, (22)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j j = 1, 2, . . . , n, (23)

xij ≥ 0, λ ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, (24)

d−q × d+q = 0, and d−q , d+q ≥ 0, q = 1, 2, . . . , Q, (25)

where w−q represents the relative importance of achieving the aspired levels of the respective
fuzzy goals which given by [44,47]:

w−q =
1

uq∗ − gq∗
, q = 1, 2, . . . , Q (26)

Extension of Pal’s Method to Linearize the Membership Goals

It can be easily realized that the parametric membership goals in Equation (19) are
non-linear fractional in nature. To avoid such problem, Pal et al. [45] method is extended
here to linearize the qth membership goals with single-scalar parameter ϑ = ϑ∗ as:
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µq
(
Zq(x, ϑ∗)

)
+ d−q − d+q = 1, q = 1, 2, . . . , Q, (27)

Lq
(
Zq(x, ϑ∗)

)
− Lqgq

∗ + d−q − d+q = 1; Lq =
1

uq∗ − gij
∗ , (28)

Zq(x, ϑ∗) =
∑m

i=1 ∑n
j=1
(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
, q = 1, 2, . . . , Q, (29)

Substituting from Equation (29) in Equation (28), we obtain:

Lq
∑m

i=1 ∑n
j=1
(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q)
− Lqgq

∗ + d−q − d+q = 1, (30)

Lq

[
m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

]
− Lqgq

∗
[

m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
+ d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

− d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
=

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
,

(31)



Lq

[
m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

]

+d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

−d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]


=
(
1 + Lqgq

∗)[ m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
, (32)



Lq

[
m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q)x(q)ij + δ(q)

]

+d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]

−d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]


= L

◦
q

[
m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
; L0

q =
(
1 + Lqgq

∗) (33)

[
Lq

m
∑

i=1

n
∑

j=1

(
cij + ϑ∗ωij

)(q) − L0
q

m
∑

i=1

n
∑

j=1
d(q)ij

]
x(q)ij + d−q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
− d+q

[
m
∑

i=1

n
∑

j=1
d(q)ij x(q)ij + ρ(q)

]
=
[

L0
qρ(q) − Lqδ(q)

]
,

(34)

C(q)
ij x(q)ij + d−q

[
m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
− d+q

[
m

∑
i=1

n

∑
j=1

d(q)ij x(q)ij + ρ(q)

]
= Gq; (35)

where

C(q)
ij =

[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑ∗ωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
, (36)

Gq =
[

L0
qρ(q) − Lqδ(q)

]
, (37)
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Considering Pal et al. [45], the goal expression in Equation (35) can be linearized as follows.
Letting D−q = d−q

[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

]
and D+

q = d+q
[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

]
, then

the linear form of expression in Equation (32) is obtained as:

C(q)
ij x(q)ij + D−q − D+

q = Gq, (38)

with D−q , D+
q ≥ 0; and D−q × D+

q = 0, since d−q , d+q ≥ 0, and ∑m
i=1 ∑n

j=1 d(q)ij x(q)ij + ρ(q) > 0.

So, minimization of d−q means minimization of D−q = d−q
[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

]
which

is also non-linear. So, involvement of d−q ≤ 1, in the solution leads to impose the following
constraint in the model:

D−q[
∑m

i=1 ∑n
j=1 d(q)ij x(q)ij + ρ(q)

] ≤ 1. (39)

Now, the final FGP model of the parametric (α, β)-MOFTP in model (20)–(25) becomes:

Min AF =
Q

∑
q=1

w−q d−q , (40)

Subject to:[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑ∗ωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
x(q)ij + D−q − D+

q =
[

L0
qρ(q) − Lqδ(q)

]
, (41)

m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q ≤ ρ(q), q = 1, 2, . . . , Q, ∀i, j, (42)

n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i , i = 1, 2, . . . , m, (43)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j j = 1, 2, . . . , n, (44)

xij ≥ 0, λ ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, (45)

D−q × D+
q = 0, and D−q , D+

q ≥ 0, q = 1, 2, . . . , Q. (46)

Thus, the above FGP model provides the satisfactory solution x∗ij for the parametric
(α, β)-MOFTP.

6. The SSFK for Parametric (α,β) -MOFTP

The main area of inquiry is as follows: having solved the parametric (α, β)-MOFTP,
to what extent can its data with respect to α, β and ϑ be changed without invalidating
the efficiency of its (α, β)-Pareto optimal solution? The set of feasible parameters, the
solvability set, and the SSFK for parametric (α, β)-MOFTP are defined as:

Definition 8. The set of feasible parameters for the parametric (α, β)-MOFTP is defined by:

F =

{
a ∈ Rm,
b ∈ Rn

∣∣∣∣∣ ai ∈ Lα,β
(
ãI

i
)
, i = 1, 2, . . . m; bj ∈ Lα,β

(
b̃I

j

)
, j = 1, 2, . . . , n;

α, β ∈ [0, 1]; and M(α,β)
(
xij, a, b

)
6= ∅

}
.

Definition 9. The solvability setM of the parametric (α, β)-MOFTP is defined by:
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M =

{
(ϑ, a, b) ∈ R× Rm × Rn

∣∣∣∣ parametric(α, β)−MOFTP has
an (α, β)− Pareto optimal solution.

}
.

Definition 10. Suppose that x∗ij be an (α, β)-Pareto optimal solution of the parametric (α, β)-

MOFTP, then the SSFK S1

(
x∗ij, α, β

)
corresponding to x∗ij is defined by:

S1

(
x∗ij, α, β

)
=

{
(ϑ, a, b) ∈ R× Rm × Rn

∣∣∣∣∣ x∗ij is an (α, β)− Pareto optimal solution o f
parametric (α, β)−MOFTP

}
.

The SSFK of the parametric (α, β)-MOFTP is the set of all parameters corresponding to
one (α, β)-Pareto optimal solution [35,36]. It is easy to see that the stability of the parametric
(α, β)-MOFTP model (14)–(17) implies the stability of the parametric FGP model which is
defined as follows:

Min AF =
Q

∑
q=1

w−q d−q ,q (47)

Subject to:[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
x(q)ij + D−q − D+

q =
[

L0
qρ(q) − Lqδ(q)

]
, (48)

m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q ≤ ρ(q), q = 1, 2, . . . , Q, ∀i, j (49)

n

∑
j=1

xij ≤ λ aL
i + (1− λ)aU

i , i = 1, 2, . . . , m, (50)

m

∑
i=1

xij ≥ λ bL
j + (1− λ)bU

j , j = 1, 2, . . . , n, (51)

xij ≥ 0, λ ∈ [0, 1], ϑ ∈ R, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (52)

D−q × D+
q = 0, and D−q , D+

q ≥ 0, q = 1, 2, . . . , Q. (53)

6.1. KKT Optimality Conditions for Parametric FGP Model

The Lagrangian function of parametric FGP model (47)–(53) follows as [36,37]:

L =

[
Q
∑

q=1
w−q D−q

]
+ ξq

[[
Lq

m
∑

i=1

n
∑

j=1

(
cij + ϑωij

)(q) − L0
q

m
∑

i=1

n
∑

j=1
d(q)ij

]
x(q)ij + D−q − D+

q −
[

L0
qρ(q) − Lqδ(q)

]]

+ υq

[
m
∑

i=1

n
∑

j=1
−d(q)ij x(q)ij + D−q − ρ(q)

]
+ τi

[
n
∑

j=1
xij −

(
λ aL

i + (1− λ)aU
i
)]

+ ηj

[
−

m
∑

i=1
xij +

(
λ bL

j + (1− λ)bU
j

)]
+ ϕij

[
−xij

]
+ ψi

[
−aL

i
]
+ φj

[
−bL

j

]
+ vi

[
−aU

i
]
+ εj

[
−bU

j

]
+ ζq

[
−D−q

]
+ πq

[
−D+

q

]
,

(54)

where ξ, υ, τ, η, ϕ, ψ, φ, v, ε, ζ and π are the Lagrange multipliers. Thus, KKT optimality
conditions [28,36,37,39] have the following form:

∂L
∂xij

= ξq

[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
+ υq

[
m

∑
i=1

n

∑
j=1
−d(q)ij

]
+ τi − ηj − ϕij = 0,i = 1, 2, . . . , m, j = 1, 2, . . . , n, (55)

∂L
∂aL

i
= −λτi − ψi = 0, i = 1, 2, . . . m, (56)
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∂L
∂aU

i
= −(1− λ)τi −vi = 0, i = 1, 2, . . . m, (57)

∂L
∂bL

j
= ληj − φj = 0, i = 1, 2, . . . m, (58)

∂L
∂bU

j
= (1− λ)ηj − εj = 0, i = 1, 2, . . . m, (59)

∂L
∂D−q

=
Q

∑
q=1

w−q + ξq + υq − ζq = 0, q = 1, 2, . . . , Q, (60)

∂L
∂D+

q
= −ξq − πq = 0, q = 1, 2, . . . , Q, (61)

[
Lq

m

∑
i=1

n

∑
j=1

(
cij + ϑωij

)(q) − L0
q

m

∑
i=1

n

∑
j=1

d(q)ij

]
x(q)ij + D−q − D+

q −
[

L0
qρ(q) − Lqδ(q)

]
= 0, (62)

m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q − ρ(q) ≤ 0, q = 1, 2, . . . , Q, ∀i, j (63)

n

∑
j=1

xij −
[
λ aL

i + (1− λ)aU
i

]
≤ 0, i = 1, 2, . . . , m, (64)

[
λ bL

j + (1− λ)bU
j

]
−

m

∑
i=1

xij ≤ 0, j = 1, 2, . . . , n, (65)

xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (66)

D−ij , D+
ij ≥ 0, q = 1, 2, . . . , Q, (67)

υq

[
m

∑
i=1

n

∑
j=1
−d(q)ij x(q)ij + D−q − ρ(q)

]
= 0, q = 1, 2, . . . , Q, ∀i, j (68)

τi

[
n

∑
j=1

xij −
(

λ aL
i + (1− λ)aU

i

)]
= 0, i = 1, 2, . . . , m, (69)

ηj

[
−

m

∑
i=1

xij +
(

λ bL
j + (1− λ)bU

j

)]
= 0, j = 1, 2, . . . , n, (70)

ϕij
[
xij
]
= 0, (71)

ψi

[
aL

i

]
= 0, (72)

φj

[
bL

j

]
= 0, (73)

vi

[
aU

i

]
= 0, (74)

εj

[
bU

j

]
= 0, (75)

ζq

[
D−q
]
= 0, (76)

πq

[
D+

q

]
= 0, (77)

υ, τ, η, ϕ, ψ, φ, v, ε, ζ, π ≥ 0, and ϑ, ξ ∈ R; (78)
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where the KKT conditions (55)–(78) are evaluated at x∗ij. Solving the system of Equations

(55)–(78), the SSFK S1

(
x∗ij, α, β

)
for parametric IF-MOFTP is obtained.

6.2. Algorithm for Determination of the SSFK S1 (x∗ij, a, b)

Following the above discussion, the algorithm for obtaining the SSFK S1

(
x∗ij, α, β

)
for

parametric (α, β)-MOFTP van be described as follows (Algorithms 1 and 2):

Algorithm 1 Phase I: Obtain an (α, β)-Pareto Optimal Solution of the Problem

1: Set the value of α, and β.
2: Presume that ϑ = ϑ∗.
3: Calculate the sole maximum and minimum values of Zq(x, ϑ∗), q = 1, 2, . . . , Q.
4: Set the goals and the upper tolerance limits for Zq(x, ϑ∗), q = 1, 2, . . . , Q.
5: Formulate µ(zq(x,ϑ∗)), q = 1, 2, . . . , Q as in Equation (18).

6: Evaluate the weights w−ij as defined in Equation (26).

7: Do the linearization procedures at ϑ = ϑ∗ for each parametric membership goal according
to Equations (35)–(38).

8: Formulate and solve the FGP model (Equations (40)–(46)) to get (α, β)-Pareto optimal
solution x∗ij.

Algorithms 2 Phase II: Determination of the SSFK S1(x∗ij, α, β)

1: Formulate the parametric FGP model (Equations (47)–(53)).
2: Obtain the Lagrangian function, for the final FGP model, as in Equation (54).
3: Apply the KKT optimality conditions to find the SSFK (Equations (55)–(78)).
4: Reduce and solve the system of Equations (55)–(78), to obtain S1(x∗ij, α, β) and stop.

7. Numerical Example

To demonstrate the proposed algorithm for finding the SSFK, consider the following
parametric IF-MOFTP:

Max

(
Z1(x, ϑ) =

ϑx11 + (2 + ϑ)x12 + (3 + 2ϑ)x21 + 6x22 + 4
x11 + 3x12 + x21 + 2x22 + 2 ,

Z2(x, ϑ) =
2x11 + (3 + ϑ)x12 + (4 + 2ϑ)x21 + (5 + ϑ)x22 + 6

x11 + 2x12 + 3x21 + x22+ 4

)
,

Subject to:
Supply constraints:

x11 + x12 ≤ ãI
1,x21 + x22 ≤ ãI

2,

Demand constraints:

x11 + x21 ≥ b̃I
1,x12 + x22 ≥ b̃I

2,

where the membership functions µãI
1
(x), µãI

2
(x), µb̃I

1
(x), µb̃I

2
(x) and the non-membership

functions γãI
1
(x), γãI

2
(x), γb̃I

2
(x), γb̃I

2
(x) of the supplies and demands are described

as follows:

µãI
1
(x) =


x−140

20 i f 140 ≤ x ≤ 160,
180−x

20 i f 160 ≤ x ≤ 180,
0 otherwise,

γãI
1
(x) =


160−x

30 i f 130 ≤ x ≤ 160,
x−160

40 i f 160 ≤ x ≤ 200,
1 otherwise,



Fractal Fract. 2021, 5, 233 12 of 18

µãI
2
(x) =


x−220

20 i f 220 ≤ x ≤ 240,
250−x

10 i f 240 ≤ x ≤ 250,
0 otherwise,

γãI
2
(x) =


240−x

20 i f 210 ≤ x ≤ 240,
x−240

30 i f 240 ≤ x ≤ 270,
1 otherwise,

µb̃I
1
(x) =


x−40

10 i f 40 ≤ x ≤ 50,
60−x

10 i f 50 ≤ x ≤ 60,
0 otherwise,

γb̃I
1
(x) =


50−x

20 i f 30 ≤ x ≤ 50,
x−50

30 i f 50 ≤ x ≤ 80,
1 otherwise,

µb̃I
2
(x) =


x−310

10 i f 310 ≤ x ≤ 320,
350−x

30 i f 320 ≤ x ≤ 350,
0 otherwise,

γb̃I
2
(x) =


320−x

20 i f 300 ≤ x ≤ 320,
x−320

60 i f 320 ≤ x ≤ 380,
1 otherwise,

Phase I: Finding an (α, β)-Pareto optimal solution of the parametric IF-MOFTP.
For a desired values of α = 0.6, and β = 0.2, then applying the concept of (α, β)-cut of

the IFN we formulate the (α, β)-MOFTP at ϑ = ϑ∗ = 3.

Max

(
Z1(x) =

3x11+ 5x12+ 9x21+ 6x22+ 8
x11+ 3x12+ x21+ 2x22+ 2 ,

Z2(x) =
2x11+ 6x12+ 10x21+ 8x22+ 6

x11+ 2x12+ 3x21+ x22+ 4

)
,

Subject to:
Supply constraints:

x11 + x12 ≤ [154, 168], x21 + x22 ≤ [234, 244].

Demand constraints:

x11 + x21 ≥ [46, 54], x12 + x22 ≥ [316, 332].

Based on the concept of convex linear combination on the constraints, then we obtain
the MOFTP:

Max

(
Z1(x) =

3x11+ 5x12+ 9x21+ 6x22+ 8
x11+ 3x12+ x21+2x22+ 2 ,

Z2(x) =
2x11+ 6x12+ 10x21+ 8x22+ 6

x11+ 2x12+ 3x21+ x22+ 4

)
,

Subject to:

x11 + x12 ≤ 165.2, x21 + x22 ≤ 240, x11 + x21 ≥ 51.6, x12 + x22 ≥ 328.8.

A FGP approach is utilized to solve the MOFTP according to the model of Equa-
tions (40)–(46). Firstly, the coefficients of the linearized membership goals are obtained
in Table 1.

Table 1. The coefficient of the linearized membership goals
(

cij
)T

and Gij.

Z1(x) Z2(x)

(
cq

ij

)T


0.682
−10.22
19.081
1.364


T 

−2.8628
−4.048
−5.234
2.1688


T

Gij −7.497 13.128

Min AF = 3.0665D−1 + 0.8386D−2 ,

Subject to:

0.682x11 − 10.22x12 + 19.081x21 + 1.364x22 + D−1 − D+
1 = −7.497,

− 2.8628x11 − 4.048x12 − 5.234x21 + 2.169x22 + D−2 − D+
2 = 13.128,
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− x11 − 3x12 − x21 − 2x22 + D−1 ≤ 2,

− x11 − 2x12 − 3x21 − x22 + D−2 ≤ 4,

x11 + x12 ≤ 165.2,

x21 + x22 ≤ 240,

x11 + x21 ≥ 51.6,

x12 + x22 ≥ 328.8,

x11, x12, x21, x22, D−1 , D+
1 , D−2 , D+

2 ≥ 0.

Using Lingo programming, the (α, β)-Pareto optimal solution of the parametric IF-
MOFTP is obtained at

(
x∗11, x∗12, x∗21, x∗22, D−1 , D+

1 , D−2 , D+
2
)
= (0, 165.88, 76.39, 163.61, 0,

0, 726.78, 0) .
Phase II: determination of the SSFK S1(x∗, α, β).
To determine the SSFK S1(x∗, a, b) of the parametric IF-MOFTP, the coefficients of the

linearized membership goals in the parametric form are recalculated in Table 2.

Table 2. The coefficients of the linearized membership goals
[(

cij + ϑωij

)(q)]T
and Gij.

Z1(x, ϑ) Z2(x, ϑ)[(
cij + ϑωij

)(q)]T

−8.518 + 3.067ϑ
−19.42 + 3.067ϑ
0.682 + 6.133ϑ

1.364


T 

−2.863
−6.564 + 0.839ϑ
−10.266 + 1.677ϑ
−0.347 + 0.839ϑ


T

Gij −7.497 13.128

Therefore, the stability of parametric IF-MOFTP implies the stability of the parametric
FGP model which is defined as:

Min AF = 3.067D−1 + 0.839D−2 ,

Subject to:

(−8.518 + 3.067ϑ)x11 + (−19.42 + 3.067ϑ)x12 + (0.682 + 6.133ϑ)x21 + 1.364x22

+ D−1 − D+
1 = −7.497,

− 2.8628x11 + (−6.564 + 0.839ϑ)x12 + (−10.266 + 1.677ϑ)x21

+ (−0.347 + 0.839ϑ)x22 + D−2 − D+
2 = 13.128,

− x11 − 3x12 − x21 − 2x22 + D−1 ≤ 2,

− x11 − 2x12 − 3x21 − x22 + D−2 ≤ 4,

x11 + x12 ≤ 0.2aL
1 + 0.8aU

1 ,

x21 + x22 ≤ 0.4aL
2 + 0.6aU

2 ,

x11 + x21 ≥ 0.3bL
1 + 0.7bU

1 ,

x12 + x22 ≥ 0.2bL
2 + 0.8bU

2 ,

x11, x12, x21, x22, aL
1 , aU

1 , aL
2 , aU

2 , bL
1 , bU

1 , bL
2 , bU

2 ≥ 0,

D−1 , D+
1 , D−2 , D+

2 ≥ 0; ϑ ∈ R

The Lagrangean function of the above parametric FGP model follows as:
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L

= 3.067D−1 + 0.839D−2 + ξ1

[
(−8.518 + 3.067ϑ)x11 + (−19.42 + 3.067ϑ)x12

+(0.682 + 6.133ϑ)x21 + 1.364x22 + D−1 − D+
1 + 7.497

]
+ ξ2

[
−2.8628x11 + (−6.564 + 0.839ϑ)x12 + (−10.266 + 1.677ϑ)x21

+(−0.347 + 0.839ϑ)x22 + D−2 − D+
2 − 13.128

]
+ ϑ1

[
−x11 − 3x12 − x21 − 2x22 + D−1 − 2

]
+ ϑ2

[
−x11 − 2x12 − 3x21 − x22 + D−2 − 4

]
+ τ1

[
x11 + x12 − 0.2aL

1 − 0.8aU
1
]
+ τ2

[
x21 + x22 − 0.4aL

2 − 0.6aU
2
]

+ η1
[
−x11 − x21 + 0.3bL

1 + 0.7bU
1
]
+η2

[
−x12 − x22 + 0.2bL

2 + 0.8bU
2
]
+ ϕ1[−x11]

+ ϕ2[−x12] + ϕ3[−x21] + ϕ4[−x22] + ψ1
[
−aL

1
]
+ ψ2

[
−aL

2
]
+ φ1

[
−bL

1
]
+ φ2

[
−bL

2
]

+ v1
[
−aU

1
]
+v2

[
−bU

2
]
+ ε1

[
−bU

1
]
+ ε2

[
−bU

2
]
+ζ1

[
−D−1

]
+ζ2

[
−D−2

]
+π1

[
−D+

1
]

+ π2
[
−D+

2
]

where ϑ, ξ1, ξ2 ∈ R, and υ1, υ2, τ1, τ2, η1, η2, ϕ1, ϕ2, ϕ3, ϕ4, ψ1, ψ2, φ1, φ2, v1, v2, ε1, ε2 ≥ 0,
and ζ1, ζ2, π1, π2 ≥ 0, are the Lagrange multipliers. Therefore, KKT optimality conditions
follows as:

∂L
∂x11

= (−8.518 + 3.067ϑ)ξ1 − 2.863ξ2 − υ1 − υ2 + τ1 − η1 − ϕ1 = 0

∂L
∂x12

= (−19.42 + 3.067ϑ)ξ1 + (−6.564 + 0.839ϑ)ξ2 − 3υ1 − 2υ2 + τ1 − η2 − ϕ2 = 0,

∂L
∂x21

= (0.682 + 6.133ϑ)ξ1 + (−10.266 + 1.677ϑ)ξ2 − υ1 − 3υ2 + τ2 − η1 − ϕ3 = 0,

∂L
∂x22

= 1.364ξ1 + (−0.347 + 0.839ϑ)ξ2 − 2υ1 − υ2 + τ2 − η2 − ϕ4 = 0,

∂L
∂aL

1
= −0.2τ1 − ψ1 = 0,

∂L
∂aU

1
= −0.8τ1 −v1 = 0,

∂L
∂aL

2
= −0.4τ2 − ψ2 = 0,

∂L
∂aU

2
= −0.6τ2 −v2 = 0,

∂L
∂bL

1
= 0.3η1 − φ1 = 0,

∂L
∂bU

1
= 0.7η1 − ε1 = 0,

∂L
∂bL

2
= 0.2η2 − φ2 = 0,

∂L
∂bU

2
= 0.8η2 − ε2 = 0,

∂L
∂D−1

= 3.067 + ξ1 + v1 − ζ1 = 0,

∂L
∂D+

1
= −ξ1 − π1 = 0,

∂L
∂D−2

= 0.839 + ξ2 + υ2 − ζ2 = 0,
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∂L
∂D+

2
= −ξ2 − π2 = 0,

υ1
[
−x11 − 3x12 − x21 − 2x22 + D−1 − 2

]
= 0, i.e., υ1 = 0,

υ2
[
−x11 − 2x12 − 3x21 − x22 + D−2 − 4

]
= 0, i.e., υ2 = 0,

τ1

[
x11 + x12 − 0.2aL

1 − 0.8aU
1

]
= 0, i.e., τ1 = 0,

τ2

[
x21 + x22 − 0.4aL

2 − 0.6aU
2

]
= 0, i.e., τ2 ≥ 0,

η1

[
−x11 − x21 + 0.3bL

1 + 0.7bU
1

]
= 0, i.e., η1 = 0,

η2

[
−x12 − x22 + 0.2bL

2 + 0.8bU
2

]
= 0, i.e., η2 = 0,

ϕ1[−x11] = 0, i.e., ϕ1 ≥ 0,

ϕ2[−x12] = 0, i.e., ϕ2 = 0,

ϕ3[−x21] = 0, i.e., ϕ3 = 0,

ϕ4[−x22] = 0, i.e., ϕ4 = 0,

ψ1

[
−aL

1

]
= 0, i.e., ψ1 = 0,

ψ2

[
−aL

2

]
= 0, i.e., ψ2 = 0,

φ1

[
−bL

1

]
= 0, i.e., φ1 = 0,

φ2

[
−bL

2

]
= 0, i.e., φ2 = 0,

v1

[
−aU

1

]
= 0, i.e., v1 = 0,

v2

[
−aU

2

]
= 0, i.e., v2 = 0,

ε1

[
−bU

1

]
= 0, i.e., ε1 = 0,

ε2

[
−bU

2

]
= 0, i.e., ε2 = 0,

ζ1
[
−D−1

]
= 0, i.e., ζ1 ≥ 0,

ζ2
[
−D−2

]
= 0, i.e., ζ2 = 0,

π1
[
−D+

1
]
= 0, i.e., π1 ≥ 0,

π2
[
−D+

2
]
= 0, i.e., π2 ≥ 0,

− x11 − 3x12 − x21 − 2x22 + D−1 ≤ 2,

− x11 − 2x12 − 3x21 − x22 + D−2 ≤ 4,

x11 + x12 ≤ 0.2aL
1 + 0.8aU

1 ,

x21 + x22 ≤ 0.4aL
2 + 0.6aU

2 ,

x11 + x21 ≥ 0.3bL
1 + 0.7bU

1 ,

x12 + x22 ≥ 0.2bL
2 + 0.8bU

2 ,

x11, x12, x21, x22, aL
1 , aU

1 , aL
2 , aU

2 , bL
1 , bU

1 , bL
2 , bU

2 , D−1 , D+
1 , D−2 , D+

2 ≥ 0; ϑ ∈ R

Solving the above system of Equation. we get: υ1 = υ2 = τ1 = τ2 = η1 = η2 = ϕ2 =
ϕ3 = ϕ4 = ψ1 = ψ2 = φ1 = φ2 = v1 = v2 = ε1 = ε2 = ζ2 = 0, and ϕ1, ζ1, π1, π2 ≥ 0.
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Also, ξ2 = −π2 = −0.839, ξ1 = −π1. The above system of Equation is reduced to
the following:

(−8.518 + 3.067ϑ)ξ1 − 2.863ξ2 − ϕ1 = 0,

(−19.42 + 3.067ϑ)ξ1 + (−6.564 + 0.839ϑ)ξ2 = 0,

(0.682 + 6.133ϑ)ξ1 + (−10.266 + 1.677ϑ)ξ2 = 0,

1.364ξ1 + (−0.347 + 0.839ϑ)ξ2 = 0,

Therefore, the SSFK for the parametric IF-MOFTP is given by:

S1(0, 165.88, 76.39, 163.61, 0, 0, 726.78, 0)

=

 ϑ ∈ R,
α, β ∈ [0, 1]

∣∣∣∣∣∣
12.948 ξ1 + [−1.41 + 6.133ξ1]ϑ + 5.799− ϕ1 = 0,
ξ1 = ζ1 − 3.67; ξ1 = −π1; ξ2 = −π2 = −0.839,

ζ1, ϕ1, π1, π2 ≥ 0; ξ1, ξ2 ∈ R


After applying the KKT optimality conditions we obtain a large system of algebraic

equations. By reducing and solving the algebraic system of equations the SSFK is obtained.
The SSFK introduces the values and relations between different parameters which generate
the same solution of the PIF-MOFTP as indicated by set S1. To test the obtained results
of the SSFK, different values of α, β ∈ [0, 1] will be taken and the solution will remain
the same.

8. Conclusions

The SSFK for the PIF-MOFTP was investigated in this study. Also, we characterized
definitions of the set of feasible parameters and the solvability set for PIF-MOFTP. First, the
concept of (α, β)-cut methodology was applied to get the parametric model. Moreover, the
FGP approach was applied to find a (α, β)-Pareto optimal solution for PIF-MOFTP which
has not been published in the literature to date. To obtain the SSFK for the novel model of
PIF-MOFTP, the KKT necessary optimality conditions are applied. After applying the KKT
optimality conditions, we obtained a large system of algebraic equations. By reducing and
solving the algebraic system of equations, the SSFK was obtained. A detailed procedure
that determines the SSFK for the PIF-MOFTP was exhibited. A numerical example was
given to ensure the applicability and efficiency of the proposed PIF-MOFTP.

The major limitation of the proposed PIF-MOFTP is that a specific (α, β)-level is
adopted in the proposed methods to represent the confidence level on DMs’ subjective
uncertainty to specify parameter values in the PIF-MOFTP. For simplification, the (α, β)-
level for all parameters of the supply and demand in the solution process are assumed to be
the same. However, these may be limitations in practical applications. The determination
of (α, β)-levels for various DMs’ subjective uncertainties could be different in the real
world due to DMs’ different consideration of the real transportation data. Thus, this will
be addressed in future studies.

Several remaining areas of research in the topic of parametric MOFTP include
the following:

1. The parametric study of multi-choice MOTP should be addressed.
2. Real-world PIF-MOFTP is a vital field in the future research.
3. Rough parametric MOFTP is a vital topic to be investigated.
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