Chirped Periodic and Solitary Waves for Improved Perturbed Nonlinear Schrödinger Equation with Cubic Quadratic Nonlinearity
Abstract
:1. Introduction
2. Mathematical Analysis
3. CPW Solution
3.1. cn-Form
3.2. dc-Form
3.3. dn-Type
3.4. ds-Type
3.5. sc-Type
3.6. sn-Type
3.7. -Type
3.8. -Type
3.9. -Type
3.10. -Type
3.11. -Type
3.12. -Type
3.13. -Type
3.14. -Type
4. The SW Limit
4.1. Bright SW
4.2. Dark Wave
4.3. Singular-I Wave
4.4. Hyperbolic-I Wave
4.5. Periodic-I Wave
4.6. Periodic-II Wave
4.7. Periodic-III Wave
4.8. Kink Type
4.9. Periodic Type
4.10. Dipole Soliton
4.11. SW
4.12. SW
4.13. SW
4.14. SW
4.15. SW
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desaix, M.; Helczynski, L.; Anderson, D.; Lisak, M. Propagation properties of chirped soliton pulses in optical nonlinear Kerr media. Phys. Rev. E 2002, 65, 056602. [Google Scholar] [CrossRef]
- Kruglov, V.I.; Peacock, A.C.; Harvey, J.D. Exact Self-Similar Solutions of the Generalized Nonlinear Schrödinger Equation with Distributed Coefficients. Phys. Rev. Lett. 2003, 90, 113902. [Google Scholar] [CrossRef]
- Akram, U.; Seadawy, A.R.; Rizvi, S.T.R.; Younis, M.; Althobaiti, S.; Sayed, S. Traveling waves solutions for the fractional Wazwaz Benjamin Bona Mahony model in arising shallow water waves. Results Phys. 2021, 20, 103725. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Bilal, M.; Younis, M.; Rizvi, S.T.R. Resonant optical solitons with conformable time fractional nonlinear Schrödinger equation. Int. J. Mod. Phys. B 2021, 35, 2150044. [Google Scholar] [CrossRef]
- Younas, U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R. Optical solitons and closed form solutions to the (3+1)-dimensional resonant Schrödinger dynamical wave equation. Int. J. Mod. Phys. B 2020, 34, 2050291. [Google Scholar] [CrossRef]
- Younas, U.; Younis, M.; Seadawy, A.R.; Rizvi, S.T.R.; Althobaiti, S.; Sayed, S. Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results Phys. 2021, 20, 103766. [Google Scholar] [CrossRef]
- Younas, U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R. Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves. Chin. J. Phys. 2020, 68, 348–364. [Google Scholar] [CrossRef]
- Hou, H.; You, T.; Zhou, Q.; Liu, M.; Ouyang, Y.; Liu, X.; Liu, W. Q-switched all-fiber laser based on titanium trisulfide. Optik 2020, 205, 164234. [Google Scholar] [CrossRef]
- Özkan, Y.S.; Seadawy, A.R.; Yaşar, E. Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko–Parkes equation arising at propagation of high-frequency waves in a relaxing medium. J. Taibah Univ. Sci. 2021, 15, 666–678. [Google Scholar] [CrossRef]
- Donne, G.D.; Hubert, M.B.; Seadawy, A.; Etienne, T.; Betchewe, G.; Doka, S.Y. Chirped soliton solutions of Fokas-Lenells equation with perturbation terms and the effect of spatio-temporal dispersion in the modulational instability analysis. Eur. Phys. J. Plus 2020, 135, 212. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Bilal, M.; Younis, M.; Rizvi, S.T.R.; Althobaiti, S.; Makhlouf, M.M. Analytical mathematical approaches for the double chain model of DNA by a novel computational technique. Chaos Solitons Fractals 2021, 144, 110669. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rehman, S.U.; Younis, M.; Rizvi, S.T.R.; Althobaiti, S.; Makhlouf, M.M. Modulation Instability analysis and longitudinal wave propagation in an elastic cylindrical rod modeled with Pochhammer-Chree equation and its modulation instability analysis. Phys. Scr. 2021, 96, 045202. [Google Scholar] [CrossRef]
- Seadawy, A.R.; El-Rashidy, K. Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys. 2018, 8, 1216–1222. [Google Scholar] [CrossRef]
- Bilal, M.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; Rashidy, A.E.; Mahmoud, S.F.M. Analytical wave structures in plasma Physics modeled by Gilson Pickering equation by two integration norms. Results Phys. 2021, 23, 103959. [Google Scholar] [CrossRef]
- Rehman, S.U.; Younis, M.; Seadawy, A.R.; Rizvi, S.T.R.; Sulaiman, T.A.; Yousuf, A. Modulation instability analysis and optical solitons of the generalized model for description of propagation pulses in optical fiber with four nonlinear terms. Mod. Phys. Lett. B 2020, 35, 2150112. [Google Scholar] [CrossRef]
- Cheemaa, N.; Seadawy, A.R.; Chen, S. More general families of exact solitary wave solutions of the nonlinear Schrodinger equation with their applications in nonlinear optics. Eur. Phys. J. Plus 2018, 133, 547. [Google Scholar] [CrossRef]
- Cheemaa, N.; Seadawy, A.R.; Chen, S. Some new families of solitary wave solutions of generalized Schamel equation and their applications in plasma physics. Eur. Phys. J. Plus 2019, 134, 117. [Google Scholar] [CrossRef]
- Goyal, A.; Gupta, R.; Kumar, C.N.; Raju, T.S. Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 2011, 84, 063830. [Google Scholar]
- Vyas, V.M.; Patel, P.; Panigrahi, P.K.; Kumar, C.N.; Greiner, W. Chirped chiral solitons in the nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 2008, 78, 021803. [Google Scholar] [CrossRef] [Green Version]
- Hmurcik, L.V.; Kaup, D.J. Solitons created by chirped initial profiles in coherent pulse propagation. J. Opt. Soc. Am. 1979, 69, 597–604. [Google Scholar] [CrossRef]
- Triki, H.; Porsezian, K.; Grelu, P. Chirped soliton solutions for the generalized nonlinear Schrödinger equation with polynomial nonlinearity and non-Kerr terms of arbitrary order. J. Opt. 2016, 18, 075504. [Google Scholar] [CrossRef]
- Triki, H.; Porsezian, K.; Choudhuri, A.; Dinda, P.T. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background. Phys. Rev. A 2016, 93, 063810. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Wang, J. Travelling wave solutions of generalized coupled Zakharov Kuznetsov and dispersive long wave equations. Res. Phys. 2016, 6, 1136–1145. [Google Scholar] [CrossRef] [Green Version]
- Helal, M.A.; Seadawy, A.R. Exact soliton solutions of a D-dimensional nonlinear Schrödinger equation with damping and difusive terms. Z. Angew. Math. Phys. 2011, 62, 839–847. [Google Scholar] [CrossRef]
- Helal, M.A.; Seadawy, A.R. Variational method for the derivative nonlinear Schrödinger equation with computational applications. Phys. Scr. 2009, 80, 350–360. [Google Scholar] [CrossRef]
- Ali, I.; Seadawy, A.R.; Rizvi, S.T.R.; Younis, M.; Ali, K. Conserved quantities along with Painleve analysis and Optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. Int. J. Mod. Phys. B 2020, 34, 2050283. [Google Scholar] [CrossRef]
- Saha, M.; Sarma, A.K. Solitary wave solutions and modulations instability analysis of the nonlinear schrödinger equation with higher order dispersion and nonlinear terms. Commun. Nonlin. Sci. Numer. Simulat. 2013, 18, 2420–2425. [Google Scholar] [CrossRef]
- Palacios, S.L. Optical solitons in highly dispersive media with a dual-power nonlinearity law. J. Opt. A Pure Appl. Opt. 2003, 5, 180–182. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Ali, I.; Bibi, I.; Younis, M. Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers. Mod. Phys. Lett. B 2020, 34, 2050399. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Cheemaa, N. Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger Equations in two core optical fibers. Phys. A Stat. Mech. Its Appl. 2019, 529, 121330. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Cheemaa, N. Applications of extended modified auxiliary equation mapping method for high order dispersive extended nonlinear schrodinger equation in nonlinear optics. Mod. Phys. Lett. B 2019, 33, 1950203. [Google Scholar] [CrossRef]
- Bouzida, A.; Triki, H.; Ullah, M.Z.; Zhou, Q.; Biswas, A.; Belic, M. Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. Optik 2017, 142, 77–81. [Google Scholar] [CrossRef]
- Savescu, M.; Khan, K.R.; Kohl, R.W.; Moraru, L.; Yildirim, A.; Biswas, A. Optical Soliton Perturbation with Improved Nonlinear Schrödinger’s Equation in Nano Fibers. J. Nanoelectron. Optoelectron. 2013, 8, 208–220. [Google Scholar] [CrossRef]
- Biswas, A.; Yildirim, Y.; Yasar, M.; Triki, H.; Zhou, Q.; Moshokoa, S.P.; Ullah, M.Z.; Belic, M. Optical soliton perturbation with full nonlinearity in polarization preserving fibers using trial equation method. J. Optoelectron. Adv. Mater. 2018, 20, 385–402. [Google Scholar]
- Ekici, M.; Zhou, Q.; Sonmezoglu, A.; Moshokoa, S.P.; Ullah, M.Z.; Biswas, A.; Belic, M. Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices Microstruct. 2017, 6036, 30745. [Google Scholar] [CrossRef] [Green Version]
- Filiz, A.; Ekici, M.; Sonmezoglu, A. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation. Sci. World J. 2014, 2014, 3928877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seadawy, A.R.; Rizvi, S.T.R.; Althobaiti, S. Chirped Periodic and Solitary Waves for Improved Perturbed Nonlinear Schrödinger Equation with Cubic Quadratic Nonlinearity. Fractal Fract. 2021, 5, 234. https://doi.org/10.3390/fractalfract5040234
Seadawy AR, Rizvi STR, Althobaiti S. Chirped Periodic and Solitary Waves for Improved Perturbed Nonlinear Schrödinger Equation with Cubic Quadratic Nonlinearity. Fractal and Fractional. 2021; 5(4):234. https://doi.org/10.3390/fractalfract5040234
Chicago/Turabian StyleSeadawy, Aly R., Syed T. R. Rizvi, and Saad Althobaiti. 2021. "Chirped Periodic and Solitary Waves for Improved Perturbed Nonlinear Schrödinger Equation with Cubic Quadratic Nonlinearity" Fractal and Fractional 5, no. 4: 234. https://doi.org/10.3390/fractalfract5040234
APA StyleSeadawy, A. R., Rizvi, S. T. R., & Althobaiti, S. (2021). Chirped Periodic and Solitary Waves for Improved Perturbed Nonlinear Schrödinger Equation with Cubic Quadratic Nonlinearity. Fractal and Fractional, 5(4), 234. https://doi.org/10.3390/fractalfract5040234