A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
- (𝔞)
- T admits a fixed point in, or
- (𝔞𝔞)
- There existsandwith.
3. An Auxiliary Result
4. Existence and Uniqueness Results
4.1. Existence and Uniqueness Result via Banach Fixed Point Theorem
- there exist positive real constants such that, for all and we have
4.2. Existence Result via Leray-Schauder Alternative
4.3. Existence Result via Krasnosel’skiĭ’s Fixed Point Theorem
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mainardi, F. Boundary Value Problems for Hilfer Type Sequential Fractional Differential Equations and Inclusions with Integral Multi-Poin Boundary Conditions. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Berlin, Germany, 1997; pp. 291–348. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Chicago, IL, USA, 2006. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Almeida, R.A. Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Abdo, M.S.; Panchal, S.K.; Saeed, A.M. Fractional boundary value problem with ψ-Caputo fractional derivative. Proc. Math. Sci. 2019, 129, 1–14. [Google Scholar] [CrossRef]
- Vivek, D.; Elsayed, E.; Kanagarajan, K. Theory and analysis of ψ-fractional differential equations with boundary conditions. Commun. Pure Appl. Anal. 2018, 22, 401–414. [Google Scholar]
- Wahash, H.A.; Abdo, M.S.; Saeed, A.M.; Panchal, S.K. Singular fractional differential equations with ψ-Caputo operator and modified Picard’s iterative method. Appl. Math. E Notes 2020, 20, 215–229. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouvill fractional derivatives. Frac. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Furati, K.M.; Kassim, N.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 12, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
- Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 2021, 44, 1438–1455. [Google Scholar] [CrossRef]
- Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
- Wongcharoen, A.; Ntouyas, S.K.; Tariboon, J. On coupled systems for Hilfer fractional differential equations with nonlocal integral boundary conditions. J. Math. 2020, 2020, 2875152. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
- Phuangthong, N.; Ntouyas, S.K.; Tariboon, J.; Nonlaopon, K. Nonlocal sequential boundary value problems for Hilfer type fractional integro-differential equations and inclusions. Mathematics 2021, 9, 615. [Google Scholar] [CrossRef]
- Sousa, J.V.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. UspekhiMat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, A.; Nuchpong, C.; Ntouyas, S.K.; Tariboon, J. A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions. Fractal Fract. 2021, 5, 162. https://doi.org/10.3390/fractalfract5040162
Samadi A, Nuchpong C, Ntouyas SK, Tariboon J. A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions. Fractal and Fractional. 2021; 5(4):162. https://doi.org/10.3390/fractalfract5040162
Chicago/Turabian StyleSamadi, Ayub, Cholticha Nuchpong, Sotiris K. Ntouyas, and Jessada Tariboon. 2021. "A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions" Fractal and Fractional 5, no. 4: 162. https://doi.org/10.3390/fractalfract5040162
APA StyleSamadi, A., Nuchpong, C., Ntouyas, S. K., & Tariboon, J. (2021). A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions. Fractal and Fractional, 5(4), 162. https://doi.org/10.3390/fractalfract5040162