Next Article in Journal
Effect of Magnetic Field with Parabolic Motion on Fractional Second Grade Fluid
Next Article in Special Issue
Chaos Control for a Fractional-Order Jerk System via Time Delay Feedback Controller and Mixed Controller
Previous Article in Journal
On Fractional Geometry of Curves
Previous Article in Special Issue
Guaranteed Cost Leaderless Consensus Protocol Design for Fractional-Order Uncertain Multi-Agent Systems with State and Input Delays
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions

by
Ayub Samadi
1,†,
Cholticha Nuchpong
2,†,
Sotiris K. Ntouyas
3,4,† and
Jessada Tariboon
5,*,†
1
Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh 1477893855, Iran
2
Thai-German Pre-Engineering School, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
3
Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
4
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematices, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
5
Intelligent and Nonlinear Dynamic Innovations, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Fractal Fract. 2021, 5(4), 162; https://doi.org/10.3390/fractalfract5040162
Submission received: 18 September 2021 / Revised: 30 September 2021 / Accepted: 1 October 2021 / Published: 10 October 2021
(This article belongs to the Special Issue Fractional Order Systems and Their Applications)

Abstract

:
In this paper, the existence and uniqueness of solutions for a coupled system of ψ-Hilfer type sequential fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions is investigated. The presented results are obtained via the classical Banach and Krasnosel’skiĭ’s fixed point theorems and the Leray–Schauder alternative. Examples are included to illustrate the effectiveness of the obtained results.

1. Introduction

Fractional calculus, as an extension of usual integer calculus, is a forceful tool to express real-world problems rather than integer-order differentiations, so that this idea has wide applications in various fields such as, mathematics, physics, engineering, biology, finance, economy and other sciences (see [1,2,3] and related references therein). Accordingly, many researchers have studied initial and boundary value problems for fractional differential equations (see [4,5,6,7,8,9,10,11]). Additionally, fractional differential equations involving coupled systems have nonlocal natures and applications in many real = world process. The investigation of types of integral and differential operators and the relationship between these operators plays a key role in studying fractional differential equations. Fractional operators of a function concerning another function were introduced by Kilbas et al. [5]. Later, Almeida [12] introduced the notion of the ψ-Caputo fractional operator. For some applications of ψ operator, we refer to the papers [13,14,15]. Hilfer [16] extended both Riemann–Liouville and Caputo fractional derivatives by presenting a family of derivative operators. Different models based on Hilfer fractional derivative have been considered in [17,18,19,20,21], and references cited therein. Many applications of Hilfer fractional differential equations can be found in many fields of mathematics, physics, etc (see [22,23,24]). The study of boundary value problems for Hilfer-fractional differential equations of order in ( 1 , 2 ] , and nonlocal boundary conditions was initiated in [25] by studying the boundary value problem of the form:
H D α 1 , β 1 u ( z ) = h ( z , u ( z ) ) , z [ c , d ] , 1 < α 1 2 , 0 β 1 1 , u ( c ) = 0 , u ( d ) = i = 1 m ε i I ϕ i u ( ξ i ) , ϕ i > 0 , ε i R , ξ i [ c , d ] ,
where H D α 1 , β 1 is the Hilfer fractional derivative of order α 1 , 1 < α 1 2 , and parameter β 1 , 0 β 1 1 , f : [ c , d ] × R R is a continuous function, c 0 and I ϕ i is the Riemann–Liouville fractional integral of order ϕ i , i = 1 , 2 , , m . Several existence and uniqueness results were proved by using a variety of fixed point theorems.
Wongcharoen et al. [26] studied a system of Hilfer-type fractional differential equations of the form
H D α 1 , β 1 u ( z ) = f 1 ( z , u ( z ) , v ( z ) ) , z [ c , d ] , H D α ¯ 1 , β 1 v ( z ) = g 1 ( z , u ( z ) , v ( z ) ) , z [ c , d ] , u ( c ) = 0 , u ( d ) = i = 1 m θ ¯ i I ϕ i v ( ξ i ) , v ( c ) = 0 , v ( d ) = j = 1 n ζ ¯ j I ϕ ¯ j u ( z i ) ,
where H D α 1 , β 1 ; ψ and H D α 1 ¯ , β 1 ; ψ are the Hilfer fractional derivatives of orders α 1 and α ¯ 1 , 1 < α 1 , α ¯ 1 < 2 and parameter β 1 , 0 β 1 1 , f 1 , g 1 : [ c , d ] × R × R R are continuous functions, c 0 , θ ¯ i , ζ ¯ i R , and I ϕ i , I ϕ ¯ j are the Riemann–Liouville fractional integrals of order ϕ i > 0 , ϕ ¯ j > 0 , i = 1 , 2 , , m , j = 1 , 2 , , n .
Sitho et al. [27] proved the existence and uniqueness of solutions for the following class of boundary value problems consisting of fractional-order ψ-Hilfer-type differential equations supplemented with nonlocal integro-multipoint boundary conditions of the form:
H D α 1 , β 1 ; ψ u ( z ) = h ( z , u ( z ) ) , z [ c , d ] , u ( c ) = 0 , u ( d ) = i = 1 n μ i c η i ψ ( s ) d s + j = 1 m λ j u ( ξ j ) ,
where H D α 1 , β 1 ; ψ is the ψ -Hilfer fractional derivative operator of order α 1 , 1 < α 1 < 2 and parameter β 1 , 0 β 1 1 , f : [ c , d ] × R R is a continuous function, c 0 , μ i , λ j R , η i , ξ j ( c , d ) , i = 1 , 2 , , n , j = 1 , 2 , m and ψ is a positive increasing function on ( c , d ] , which has a continuous derivative ψ ( t ) on ( c , d ) .
Recently, in [28], the boundary value problem (3) was extended to sequential ψ -Hilfer-type fractional differential equations involving integral multi-point boundary conditions of the form
H D α 1 , β 1 ; ψ + k H D α 1 1 , β 1 ; ψ u ( z ) = f ( z , u ( z ) ) , k R , z [ c , d ] , u ( c ) = 0 , u ( d ) = i = 1 n μ i a η i ψ ( s ) u ( s ) d s + j = 1 m θ j u ( ξ j ) ,
where the notations are the same as those of problem (3).
In the present research, inspired by the published articles in this direction, we study the existence and uniqueness of solutions for the following coupled system of sequential ψ -Hilfer-type fractional differential equations with integro-multi-point boundary conditions of the form
( H D α 1 , β 1 ; ψ + k H D α 1 1 , β 1 ; ψ ) u ( z ) = f ( z , u ( z ) , v ( z ) ) , z [ c , d ] , ( H D α ¯ 1 , β 1 ; ψ + k H D α ¯ 1 1 , β 1 ; ψ ) v ( z ) = g ( z , u ( z ) , v ( z ) ) , z [ c , d ] , u ( c ) = 0 , u ( d ) = i = 1 n μ i c η i ψ ( s ) v ( s ) d s + j = 1 m θ j v ( ξ j ) , v ( c ) = 0 , v ( d ) = r = 1 p υ r c ς r ψ ( s ) u ( s ) d s + s = 1 q τ s u ( σ s ) ,
where H D α 1 , β 1 ; ψ and H D α 1 ¯ , β 1 ; ψ are the ψ -Hilfer fractional derivatives of orders α 1 and α ¯ 1 , 1 < α 1 , α ¯ 1 < 2 and parameter β 1 , 0 β 1 1 , f , g : [ c , d ] × R × R R are continuous functions, c 0 , μ i , θ j , υ r , τ s R + , η i , ξ j , ς r , σ s ( c , d ) , i = 1 , 2 , , n , j = 1 , 2 , , m , r = 1 , 2 , , p , s = 1 , 2 , , q and ψ is an increasing and positive monotone function on ( c , d ] having a continuous derivative ψ on ( c , d ) .
The classical fixed point theorems are applied in order to obtain our main existence and uniqueness results. Thus, the Banach fixed point theorem is applied to obtain the uniqueness result, while Leray–Schuader alternative and Krasnosel’skiĭ’s fixed point theorems are the basic tools used to present the existence results.
The rest of the paper is organized as follows: we recall some primitive concepts in Section 2. In Section 3, an auxiliary lemma is proved, which is a basic tool in proving the main results of the paper, which are presented in Section 4. The main results are supported by numerical examples.

2. Preliminaries

In this section, some basic concepts in connection to fractional calculus and fixed point theory are assigned. Throughout the paper, by X = C ( [ c , d ] , R ) , we denote the Banach space of all continuous mappings from [ c , d ] to R endowed with the norm x = sup | x ( t ) | ; t [ c , d ] . It is clear that the space X × X , endowed with the norm ( x , y ) = x + y , is a Banach space.
Definition 1 ([2]). 
Let ( c , d ) , ( c < d ) α > 0 and ψ ( z ) be a positive increasing function on ( c , d ] , with continuous derivative ψ ( z ) on ( c , d ) . The ψ-Riemann–Liouville fractional integral of a function h with respect to a another function ψ on [ c , d ] is defined by
I α , ψ h ( z ) = 1 Γ ( α ) c z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 h ( s ) d s , z > c > 0 ,
where Γ ( . ) is the Euler Gamma function.
Definition 2 ([29]). 
Let ψ C n ( [ c , d ] , R ) with ψ ( z ) 0 and η > 0 , n N . The Riemann–Liouville derivatives of a function h with connection to another function ψ of order η is represented as
D η ; ψ h ( z ) = 1 ψ ( z ) d d z n I c + n η ; ψ , = 1 Γ ( n η ) 1 ψ ( z ) d d z n c z ψ ( s ) ( ψ ( z ) ψ ( s ) ) n η 1 h ( s ) d s ,
where n = [ η ] + 1 , [ η ] represent the integer part of real number η .
Definition 3 ([29]). 
Assume that n 1 < η < n with n N and [ c , d ] is the interval so that c < d and h , ψ C n ( [ c , d ] , R ) are two functions, such that ψ is increasing and ψ ( z ) 0 for all z [ c , d ] . The ψ-Hilfer fractional derivative of a function h of order η and type 0 η ¯ 1 is defined by
H D c + η , η ¯ ; ψ h ( z ) = I c + η ¯ ( n η ) ; ψ 1 ψ ( z ) d d z n I c + ( 1 η ¯ ) ( n η ) ; ψ h ( z ) = I c + γ η ; ψ D c + γ ; ψ h ( z ) ,
where n = [ η ] + 1 , [ η ] represents the integer part of the real number η with γ = η + η ¯ ( n η ) .
Lemma 1 ([29]). 
If h C n ( J , R ) , n 1 < η < n , 0 η ¯ 1 and γ = η + η ¯ ( n η ) , then
I c + η ; ψ H D c + η , η ¯ ; ψ h ( z ) = h ( z ) k = 1 n ( ψ ( z ) ψ ( a ) ) γ k Γ ( γ k + 1 ) ψ [ n k ] I c + ( 1 η ¯ ) ( n η ) ; ψ h ( c ) ,
for all z J , where ψ [ n ] h ( z ) = 1 ψ ( z ) d d z n h ( z ) .
Finally, we summarize the fixed point theorems used to prove the main results in this paper. X is a Banach space in each theorem.
Lemma 2. 
(Banach fixed point theorem [30]). Let D be a closed set in X and T : D D satisfies
| T u T v | λ | u v | , f o r   s o m e λ ( 0 , 1 ) , a n d   f o r   a l l u , v D .
Then T admits one fixed point in D.
Lemma 3. 
(Leray–Schauder alternative [31]). Let the set Ω be closed bounded convex in X and O an open set contained in Ω with 0 O . Then, for the continuous and compact T : U ¯ Ω , either:
(𝔞)
T admits a fixed point in U ¯ , or
(𝔞𝔞)
There exists u U and μ ( 0 , 1 ) with u = μ T ( u ) .
Lemma 4. 
(Krasnosel’skiĭ fixed point theorem [32]). Let M be a closed, bounded, convex and nonempty subset of a Banach space X. Let A , B be operators such that (i) A x + B y M where x , y M , (ii) A is compact and continuous and (iii) B is a contraction mapping. Then there exists z M such that z = A z + B z .

3. An Auxiliary Result

We prove the following auxiliary lemma, concerning a linear variant of the coupled system (5), which is useful to present the coupled system (5) as a fixed point problem.
Lemma 5. 
Let c 0 , 1 < α 1 , α ¯ 1 < 2 , 0 β 1 1 , γ = α 1 + 2 β 1 α 1 β 1 , γ 1 = α ¯ 1 + 2 β 1 α ¯ 1 β 1 and Λ 0 .
Then, for h 1 , h 2 C ( [ c , d ] , R ) , the unique solution of the coupled system
( H D α 1 , β 1 ; ψ + k H D α 1 1 , β 1 ; ψ ) u ( z ) = h 1 ( z ) , z [ c , d ] , ( H D α ¯ 1 , β 1 ; ψ + k H D α ¯ 1 1 , β 1 ; ψ ) v ( z ) = h 2 ( z ) , z [ c , d ] , u ( c ) = 0 , u ( d ) = i = 1 n μ i c η i ψ ( s ) v ( s ) d s + j = 1 m θ j v ( ξ j ) , v ( c ) = 0 , v ( d ) = r = 1 p υ r c ς r ψ ( s ) u ( s ) d s + s = 1 q τ s u ( σ s ) ,
is given as
u ( z ) = k c z ψ ( s ) u ( s ) d s + I c + α 1 ; ψ h 1 ( z ) + ( ψ ( z ) ψ ( c ) ) γ 1 Λ Γ ( γ ) [ Δ ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ h 2 ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ h 2 ( ξ j ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s + k c d ψ ( s ) u ( s ) d s I c + α 1 ; ψ h 1 ( d ) ) + B ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ h 1 ( s ) d s + s = 1 q τ s I α 1 ; ψ h 1 ( σ s ) k s = 1 q τ s c σ s ψ ( s ) u ( s ) d s k r = 1 p v r a ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s + k c d ψ ( s ) v ( s ) d s I c + α ¯ 1 ; ψ h 2 ( d ) ) ] ,
and
v ( z ) = k c z ψ ( s ) v ( s ) d s + I c + α ¯ 1 ; ψ h 2 ( z ) + ( ψ ( z ) ψ ( c ) ) γ 1 1 Λ Γ ( γ 1 ) [ A ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ h 1 ( s ) d s + s = 1 q τ s I α 1 ; ψ h 1 ( σ s ) k s = 1 q τ s c σ s ψ ( s ) u ( s ) d s k r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s + k c c ψ ( s ) v ( s ) d s I c + α ¯ 1 ψ h 2 ( d ) ) + Γ ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ h 2 ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ h 2 ( ξ j ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s + k c d ψ ( s ) u ( s ) d s I c + α 1 ; ψ h 1 ( d ) ) ] ,
where
A = ( ψ ( d ) ψ ( c ) ) γ 1 Γ ( γ ) , B = i = 1 n μ i c η i ψ ( s ) ( ψ ( s ) ψ ( a ) ) γ 1 1 Γ ( γ 1 ) d s + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) γ 1 1 Γ ( γ 1 ) , Γ = r = 1 p v r c ς r ψ ( s ) ( ψ ( s ) ψ ( a ) ) γ 1 Γ ( γ ) d s + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) γ 1 Γ ( γ ) , Δ = ( ψ ( d ) ψ ( c ) ) γ 1 1 Γ ( γ 1 ) ,
and
Λ = A Δ B Γ .
Proof. 
Taking the operator I α on both sides of equations in (6) and using Lemma 1, we conclude that
u ( z ) = c 0 ( ψ ( z ) ψ ( c ) ) ( 2 α 1 ) ( 1 β 1 ) Γ ( 1 ( 2 α 1 ) ( 1 β 1 ) ) + c 1 ( ψ ( z ) ψ ( c ) ) 1 ( 2 α 1 ) ( 1 β 1 ) Γ ( 2 ( 2 α 1 ) ( 1 β 1 ) k c z ψ ( s ) u ( s ) d s + I c + α 1 ; ψ h 1 ( z ) = c 0 ( ψ ( z ) ψ ( c ) ) γ 2 Γ ( γ 1 ) + c 1 ( ψ ( z ) ψ ( c ) ) γ 1 Γ ( γ ) k c z ψ ( s ) u ( s ) d s + I c + α 1 ; ψ h 1 ( z ) , v ( z ) = d 0 ( ψ ( z ) ψ ( c ) ) γ 1 2 Γ ( γ 1 1 ) + d 1 ( ψ ( z ) ψ ( c ) ) γ 1 1 Γ ( γ 1 ) k c z ψ ( s ) v ( s ) d s + I c + α ¯ 1 ; ψ h 2 ( z ) .
Hence, due to u ( c ) , v ( c ) = 0 , we obtain c 0 , d 0 = 0 . Consequently,
u ( z ) = c 1 ( ψ ( z ) ψ ( c ) ) γ 1 Γ ( γ ) k c z ψ ( s ) u ( s ) d s + I c + α 1 ; ψ h 1 ( z ) ,
v ( z ) = d 1 ( ψ ( z ) ψ ( c ) ) γ 1 1 Γ ( γ 1 ) k c z ψ ( s ) v ( s ) d s + I c + α ¯ 1 ; ψ h 2 ( z ) .
From u ( d ) = i = 1 n μ i c η i ψ ( s ) v ( s ) d s + j = 1 m θ j v ( ξ j ) and v ( d ) = r = 1 p v r c ς r ψ ( s ) u ( s ) d s + s = 1 q τ s u ( σ s ) , we have
c 1 ( ψ ( d ) ψ ( c ) ) γ 1 Γ ( γ ) k c d ψ ( s ) u ( s ) d s + I c + α 1 ; ψ h 1 ( d ) = d 1 i = 1 n μ i c η i ψ ( s ) ( ψ ( s ) ψ ( c ) ) γ 1 1 Γ ( γ 1 ) d s + i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ h 2 ( s ) d s + d 1 j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) γ 1 1 Γ ( γ 1 ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ h 2 ( ξ j ) k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s ,
and
d 1 ( ψ ( d ) ψ ( c ) ) γ 1 1 Γ ( γ 1 ) k c d ψ ( s ) v ( s ) d s + I c + α ¯ 1 ψ h 2 ( d ) = c 1 r = 1 p v r a ς r ψ ( s ) ( ψ ( s ) ψ ( a ) ) γ 1 Γ ( γ ) d s + r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ h 1 ( s ) d s + c 1 s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) γ 1 Γ ( γ ) k s = 1 q τ s a σ s ψ ( s ) u ( s ) d s + s = 1 q τ s I α 1 ; ψ h 1 ( σ s ) k r = 1 p v r a ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s ,
or
A c 1 B d 1 = P , Γ c 1 + Δ d 1 = Q ,
where A , B , Γ , Δ are defined by (9) and
P = i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ h 2 ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ h 2 ( ξ j ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s + k c d ψ ( s ) u ( s ) d s I c + α 1 ; ψ h 1 ( d ) ,
and
Q = r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ h 1 ( s ) d s + s = 1 q τ s I α 1 ; ψ h 1 ( σ s ) k s = 1 q τ s c σ s ψ ( s ) u ( s ) d s k r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s + k c d ψ ( s ) v ( s ) d s I c + α ¯ 1 ψ h 2 ( d ) .
By solving the above system, we find
c 1 = Δ P + B Q Λ , d 1 = A Q + Γ P Λ .
Substituting the values of c 1 and d 1 into Equations (10) and (11), respectively, we obtain the solutions (7) and (8). The converse is obtained by direct computation. The proof is finished. □

4. Existence and Uniqueness Results

Keeping in mind Lemma 5, we define an operator P : X × X X × X by
P ( u , v ) ( z ) : = P 1 ( u , v ) ( z ) , P 2 ( u , v ) ( z ) ,
where
P 1 ( u , v ) ( z ) = k c z ψ ( s ) u ( s ) d s + I c + α 1 ; ψ f u v ( z ) + ( ψ ( z ) ψ ( c ) ) γ 1 Λ Γ ( γ ) [ Δ ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ g u v ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ g u v ( ξ j ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s + k c d ψ ( s ) u ( s ) d s I c + α 1 ; ψ f u v ( d ) ) + B ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ f u v ( s ) d s + s = 1 q τ s I α 1 ; ψ f u v ( σ s ) k s = 1 q τ s c σ s ψ ( s ) u ( s ) d s k r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s + k c d ψ ( s ) v ( s ) d s I c + α ¯ 1 ψ g u v ( d ) ) ] ,
and
P 2 ( u , v ) ( z ) = k c z ψ ( s ) v ( s ) d s + I c + α ¯ 1 ; ψ g u v ( z ) + ( ψ ( z ) ψ ( c ) ) γ 1 1 Λ Γ ( γ 1 ) [ A ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ f u v ( s ) d s + s = 1 q τ s I α 1 ; ψ h 1 ( σ s ) k s = 1 q τ s c σ s ψ ( s ) u ( s ) d s k r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s + k c d ψ ( s ) v ( s ) d s I c + α ¯ 1 ψ g u v ( d ) ) + Γ ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ g u v ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ g u v ( ξ j ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s + k c d ψ ( s ) u ( s ) d s I c + α 1 ; ψ f u v ( d ) ) ] ,
where
f u v ( z ) = f ( z , u ( z ) , v ( z ) ) , g u v ( z ) = g ( z , u ( z ) , v ( z ) ) .
For the sake of convenience, we use the following notations:
A 1 = ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + | B | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 1 + 2 ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ] ,
A 2 = ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ) + | B | ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ] ,
A 3 = | k | ( ψ ( d ) ψ ( c ) ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | | k | ( ψ ( d ) ψ ( c ) ) + | B | | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 ] ,
A 4 = ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 ) + | B | | k | ( ψ ( d ) ψ ( c ) ) ] ,
B 1 = ( ψ ( d ) ψ ( c ) ) γ 1 1 | Λ | Γ ( γ 1 ) [ | A | υ r i = 1 n ( ψ ( ς r ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + | Γ | ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ] ,
B 2 = ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) + ( ψ ( d ) ψ ( c ) ) γ 1 1 | Λ | Γ ( γ 1 ) [ | A | ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) + | Γ | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ] ,
B 3 = ( ψ ( d ) ψ ( c ) ) γ 1 1 | Λ | Γ ( γ 1 ) [ | A | ( | k | j = 1 m τ s ( ψ ( σ s ) ψ ( c ) ) + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 ) + | Γ | | k | ( ψ ( d ) ψ ( c ) ) ] ,
B 4 = | k | ( ψ ( d ) ψ ( c ) ) + ( ψ ( d ) ψ ( c ) ) γ 1 1 | Λ | Γ ( γ 1 ) [ | A | | k | ( ψ ( d ) ψ ( c ) ) + | Γ | | k | j = 1 m θ j ) ( ψ ( ξ j ) ψ ( c ) ) + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 ] .

4.1. Existence and Uniqueness Result via Banach Fixed Point Theorem

Here, by using the Banach contraction mapping principle, we prove an existence and uniqueness result.
Theorem 1. 
Assume that Λ 0 and f , g : [ c , d ] × R 2 R two functions satisfying the condition:
( H 1 )
 there exist positive real constants 1 , 2 such that, for all z [ c , d ] and u i , v i R , i = 1 , 2 we have
| f ( z , u 1 , v 1 ) f ( z , u 2 , v 2 ) | 1 | u 1 u 2 | + v 1 v 2 , | g ( z , u 1 , v 1 ) g ( z , u 2 , v 2 ) | 2 | u 1 u 2 | + v 1 v 2 .
Then, system (5) admits a unique solution on [ c , d ] provided that
1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + A 4 + B 3 + B 4 < 1 ,
where A i , B i , i = 1 , 2 , 3 , 4 are given by (15)–(18) and (19)–(22) respectively.
Proof. 
We transform system (5) into a fixed point problem, ( u , v ) ( z ) = P ( u , v ) ( z ) , where the operator P is defined as in (12). Applying the Banach contraction mapping principle, we show that the operator P has a unique fixed point, which is the unique solution of system (5).
Let sup z [ c , d ] | f ( z , 0 , 0 ) | : = M ¯ < and sup z [ c , d ] | g ( z , 0 , 0 ) | : = N ¯ < . Next, we set B r : = { ( u , v ) X × X : ( u , v ) r } with
r M ¯ ( A 1 + B 1 ) + N ¯ ( A 2 + B 2 ) 1 [ 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + A 4 + B 3 + B 4 ] .
Observe that B r is a bounded, closed, and convex subset of X .
First, we show that P B r B r .
For any ( u , v ) B r , z [ c , d ] , using the condition ( H 1 ) , we have
| f u v ( z ) | = | f ( z , u ( z ) , v ( z ) ) | | f ( z , u ( z ) , v ( z ) ) f ( z , 0 , 0 ) | + | f ( z , 0 , 0 ) | 1 ( | u ( z ) | + | v ( z ) | ) + M ¯ 1 ( u + v ) + M ¯ 1 r + M ¯ ,
and
| g u v ( z ) | = | g ( z , u ( z ) , v ( z ) ) | 2 ( u + v ) + N ¯ 2 r + N ¯ .
Then, we obtain
| P 1 ( u , v ) ( z ) | | k | c d ψ ( s ) | u ( s ) | d s + I c + α 1 ; ψ | f u v | ( z ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ | g u v | ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ | g u v | ( ξ j ) + | k | j = 1 m θ j c ξ j ψ ( s ) | v ( s ) | d s + | k | i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) | v ( t ) | d t d s + | k | c d ψ ( s ) | u ( s ) | d s + I c + α 1 ; ψ | f u v | ( d ) ) + | B | ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ | f u v | ( s ) d s + s = 1 q τ s I α 1 ; ψ | f u v | ( σ s ) + | k | s = 1 q τ s c σ s ψ ( s ) | u ( s ) | d s + | k | r = 1 p v r a ς r ψ ( s ) c s ψ ( t ) | u ( t ) | d t d s + | k | c d ψ ( s ) | v ( s ) | d s + I c + α ¯ 1 ψ | g u v | ( d ) ) ] | k | ( ψ ( d ) ψ ( c ) ) u + ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ( 1 r + M ¯ ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) ( 2 r + N ¯ ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ( 2 r + N ¯ ) + | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) v + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 v + | k | ( ψ ( d ) ψ ( c ) ) u + ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ( 1 r + M ¯ ) ) + | B | ( r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 1 + 2 ) ( 1 r + M ¯ ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ( 1 r + M ¯ ) + | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) u + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 u + | k | ( ψ ( d ) ψ ( c ) v + ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ( 2 r + N ¯ ) ) ] ( 1 r + M ¯ ) { ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + | B | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 2 + 2 ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ] } + ( 2 r + N ¯ ) { ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ) + | B | ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ] } + r { | k | ( ψ ( d ) ψ ( c ) ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | | k | ( ψ ( d ) ψ ( c ) ) + | B | ( | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 ) ] } + r ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 ) + | B | | k | ( ψ ( d ) ψ ( c ) ) ] = A 1 ( 1 r + M ¯ ) + A 2 ( 2 r + N ¯ ) + r ( A 3 + A 4 ) .
Hence
P 1 ( u , v ) A 1 ( 1 r + M ¯ ) + A 2 ( 2 r + N ¯ ) + r ( A 3 + A 4 ) .
Similarly, we find that
P 2 ( u , v ) B 1 ( 1 r + M ¯ ) + B 2 ( 2 r + N ¯ ) + r ( B 3 + B 4 ) .
Consequently, we have
P ( x , y ) 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + A 4 + B 3 + B 4 r + ( A 1 + B 1 ) M ¯ + ( A 2 + B 2 ) N ¯ r ,
which implies that P B r B r .
Next we show that P : X × X X × X is a contraction.
Using condition ( H 1 ) , for any ( u 1 , v 1 ) , ( u 2 , v 2 ) X × X and for each z [ c , d ] , we have
| P 1 ( u 1 , v 1 ) ( z ) P 1 ( u 2 , v 2 ) ( z ) | | k | c d ψ ( s ) | u 1 ( s ) u 2 ( s ) | d s + I c + α 1 ; ψ | f u 1 v 1 f u 2 v 2 | ( z ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ | g u 1 v 1 g u 2 v 2 | ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ | g u 1 v 1 g u 2 v 2 | ( ξ j ) + | k | j = 1 m θ j c ξ j ψ ( s ) | v 1 ( s ) v 2 ( s ) | d s + | k | i = 1 n μ i c η i ψ ( s ) c s ψ ( s ) | v ( t ) | d t d s + | k | c d ψ ( t ) | u 1 ( s ) u 2 ( s ) | d s + I c + α 1 ; ψ | f u 1 v 1 f u 2 v 2 | ( b ) ) + | B | ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ | f u 1 v 1 f u 2 v 2 | ( s ) d s + s = 1 q τ s I α 1 ; ψ | f u 1 v 1 f u 2 v 2 | ( σ s ) + | k | s = 1 q τ s c σ s ψ ( s ) | u 1 ( s ) u 2 ( s ) | d s + | k | r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) | u ( t ) | d t d s + | k | c d ψ ( s ) | v 1 ( s ) v 2 ( s ) | d s + I c + α ¯ 1 ψ | g u 1 v 1 g u 2 v 2 | ( d ) ) ] | k | ( ψ ( d ) ψ ( c ) ) u 1 u 2 + ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) 1 ( u 1 u 2 + v 1 v 2 ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) 2 ( u 1 u 2 + v 1 v 2 ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ( 2 r + N ) + | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) v 1 v 2 + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 v 1 v 2 + | k | ( ψ ( d ) ψ ( c ) ) u 1 u 2 + ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) 1 ( u 1 u 2 + v 1 v 2 ) ) + | B | ( r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 1 + 2 ) 1 ( u 1 u 2 + v 1 v 2 ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) 1 ( u 1 u 2 + v 1 v 2 ) + | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) u 1 u 2 + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 u 1 u 2 + | k | ( ψ ( d ) ψ ( c ) v 1 v 2 + ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) 2 ( u 1 u 2 + v 1 v 2 ) ) ] 1 ( u 1 u 2 + v 1 v 2 ) { ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + | B | ( r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 1 + 2 ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ) ] } + 2 ( u 1 u 2 + v 1 v 2 ) { ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ) + | B | ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ] } + u 1 u 2 { | k | ( ψ ( d ) ψ ( c ) ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | | k | ( ψ ( d ) ψ ( c ) ) + | B | | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 ] } + ( ψ ( b ) ψ ( a ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( a ) ) + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 ) + | B | | k | ( ψ ( d ) ψ ( c ) ) ] v 1 v 2 = ( 1 A 1 + 2 A 2 ) ( u 1 u 2 + v 1 v 2 ) + A 3 u 1 u 2 + A 4 v 1 v 2 . ( 1 A 1 + 2 A 2 ) + A 3 + A 4 ) ( v 1 v 2 + v 1 v 2 ) ,
and therefore
P 1 ( u 1 , v 1 ) P 1 ( u 2 , v 2 ) ( 1 A 1 + 2 A 2 ) + A 3 + A 4 ) ( u 1 u 2 + v 1 v 2 ) .
Similarly, we find that
P 2 ( u 1 , v 1 ) P 2 ( u 2 , v 2 ) ( 1 B 1 + 2 B 2 ) + B 3 + B 4 ) ( u 1 u 2 + v 1 v 2 ) .
From (25) and (26), it yields
P ( u 1 , u 1 ) P ( u 2 , u 2 ) 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + A 4 + B 3 + B 4 × u 1 u 2 + v 1 v 2 .
Since 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + A 4 + B 3 + B 4 < 1 , by (23), the operator P is a contraction. Therefore, using the Banach contraction mapping principle (Lemma 1), the operator P has a unique fixed point. Hence, system (5) has a unique solution on [ c , d ] . The proof is completed. □

4.2. Existence Result via Leray-Schauder Alternative

The Leray–Schauder alternative (Lemma 3) is used in the proof of our first existence result.
Theorem 2. 
Let Λ 0 , and f, g : [ c , d ] × R 2 R be continuous functions. Assume that:
( H 2 )
There exist real constants u i , v i 0 for i = 1 , 2 and u 0 , v 0 > 0 such that for all u , v R , we have
| f ( z , u ( z ) , v ( z ) ) | u 0 + u 1 | u | + u 2 | v | , | g ( z , u ( z ) , v ( z ) ) | v 0 + v 1 | u | + v 2 | v | .
If ( A 1 + B 1 ) u 1 + ( A 2 + B 2 ) v 1 + A 3 + B 3 < 1 and ( A 1 + B 1 ) u 2 + ( A 2 + B 2 ) v 2 + A 4 + B 4 < 1 , where A i , B i for i = 1 , 2 are given by (15)–(18) and (19)–(22), respectively, then the system (5) admits at least one solution on [ c , d ] .
Proof. 
Obviously, the operator P is continuous, due to the continuity of the functions f , g on [ c , d ] × R 2 . Now, show that the operator P : X × X X × X is completely continuous. Let B r X × X be a bounded set, where B r = { ( u , v ) X × X : ( u , v ) r } . Then, for any ( u , v ) B r , there exist positive real numbers W 1 and W 2 such that | f u v ( z ) | = | f ( z , u ( t ) , v ( z ) ) | W 1 and | g u v ( z ) | = | g ( z , u ( z ) , v ( z ) ) | W 2 .
Thus, for each ( u , v ) B r we have
| P 1 ( u , v ) ( z ) | | k | c d ψ ( s ) | u ( s ) | d s + I c + α 1 ; ψ | f u v ( z ) | + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ | g u v ( s ) | d s + j = 1 m θ j I α ¯ 1 ; ψ | g u v ( ξ j ) | + | k | j = 1 m θ j c ξ j ψ ( s ) | v ( s ) | d s + | k | i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) | v ( t ) | d t d s + | k | c d ψ ( s ) | u ( s ) | d s + I c + α 1 ; ψ | f u v | ( d ) ) + | B | ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ | f u v | ( s ) d s + s = 1 q τ s I α 1 ; ψ | f u v | ( σ s ) + | k | s = 1 q τ s c σ s ψ ( s ) | u ( s ) | d s + | k | r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) | u ( t ) | d t d s + | k | c d ψ ( s ) | v ( s ) | d s + I c + α ¯ 1 ψ | g u v | ( d ) ) ] | k | ( ψ ( d ) ψ ( c ) ) u + ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) W 1 + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) W 2 + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) W 2 + | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) v + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 v + | k | ( ψ ( d ) ψ ( c ) ) u + ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) W 1 ) + | B | ( r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 1 + 2 ) W 1 + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) W 1 + | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) u + 1 2 | k | r = 1 n v r ( ψ ( ς r ) ψ ( c ) ) 2 u + | k | ( ψ ( d ) ψ ( c ) v + ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) W 2 ) ] W 1 { ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + | B | r = 1 n v r ( ψ ( ς r ) ψ ( a ) ) α 1 + 1 Γ ( α 1 + 2 ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) ] } + W 2 { ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ) + | B | ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ] } + r { | k | ( ψ ( d ) ψ ( c ) ) + ( ψ ( d ) ψ ( c ) ) γ 1 Γ ( γ ) [ | Δ | | k | ( ψ ( d ) ψ ( c ) ) + | B | ( | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 ) ] } + r ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 ) + | B | | k | ( ψ ( d ) ψ ( c ) ) ] = A 1 W 1 + A 2 W 2 + r ( A 3 + A 4 ) ,
which yields
P 1 ( u , v ) A 1 W 1 + A 2 W 2 + r ( A 3 + A 4 ) .
Similarly, we obtain that
P 2 ( u , v ) B 1 W 1 + B 2 W 2 + r ( B 3 + B 4 ) .
Hence, from the above inequalities, we find that the operator P is uniformly bounded, since
P ( u , v ) ( A 1 + B 1 ) W 1 + ( B 1 + B 2 ) W 2 + r ( A 3 + A 4 + B 3 + B 4 ) .
Next, we prove that the operator P is equicontinuous. Let τ 1 , τ 2 [ c , d ] with τ 1 < τ 2 . Then, we have
| P 1 ( u , v ) ( τ 2 ) P 1 ( u , v ) ( τ 1 ) | | I c + α 1 ; ψ f u v ( τ 2 ) I c + α 1 ; ψ f u v z ( τ 1 ) | + ( ψ ( τ 2 ) ψ ( c ) ) γ 1 ( ψ ( τ 1 ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ | g u v ( s ) | d s + j = 1 m θ j I α ¯ 1 ; ψ | g u v ( ξ j ) | + | k | j = 1 m θ j c ξ j ψ ( s ) | v ( s ) | d s + | k | i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) | v ( t ) | d t d s + | k | c d ψ ( s ) | u ( s ) | d s + I c + α 1 ; ψ | f u v | ( d ) ) + | B | ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ | f u v | ( s ) d s + s = 1 q τ s I α 1 ; ψ | f u v | ( σ s ) + | k | s = 1 q τ s c σ s ψ ( s ) | u ( s ) | d s + | k | r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) | u ( t ) | d t d s + | k | c d ψ ( s ) | v ( s ) | d s + I c + α ¯ 1 ψ | g u v | ( d ) ) ] W 1 | c τ 1 ψ ( s ) ( ψ ( τ 2 ) ψ ( s ) ) α 1 1 ( ψ ( τ 1 ) ψ ( s ) ) α 1 1 Γ ( α 1 ) d s + τ 1 τ 2 ψ ( s ) ( ψ ( τ 2 ) ψ ( s ) ) α 1 1 Γ ( α 1 ) d s | + ( ψ ( τ 2 ) ψ ( c ) ) γ 1 ( ψ ( τ 1 ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) [ | Δ | ( i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) α ¯ 1 + 1 Γ ( α ¯ 1 + 2 ) W 2 + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) W 2 + | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) v + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 v + | k | ( ψ ( d ) ψ ( c ) ) u + ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) W 1 ) + | B | ( r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 1 + 2 ) W 1 + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) W 1 + | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) u + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 u + | k | ( ψ ( d ) ψ ( c ) v + ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) W 2 ) ] W 1 Γ ( α 1 + 1 ) 2 ( ψ ( τ 2 ) ψ ( τ 1 ) ) α 1 + ( ψ ( τ 2 ) ψ ( c ) ) α 1 ( ψ ( τ 1 ) ψ ( c ) ) α 1 + [ ( ψ ( τ 2 ) ψ ( c ) ) γ 1 ( ψ ( τ 1 ) ψ ( c ) ) γ 1 ] | Λ | Γ ( γ ) { W 1 | Δ | ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + | B | W 1 r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) α 1 + 1 Γ ( α 1 + 2 ) + s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) + W 2 | Δ | ( ψ ( d ) ψ ( c ) ) γ 1 | Λ | Γ ( γ ) + j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) + | B | ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) + r [ | Δ | | k | ( ψ ( d ) ψ ( c ) ) + | B | ( | k | s = 1 q τ s ( ψ ( σ s ) ψ ( c ) ) + 1 2 | k | r = 1 p v r ( ψ ( ς r ) ψ ( c ) ) 2 ) ] + r [ | Δ | ( | k | j = 1 m θ j ( ψ ( ξ j ) ψ ( c ) ) + 1 2 | k | i = 1 n μ i ( ψ ( η i ) ψ ( c ) ) 2 ) + | B | | k | ( ψ ( d ) ψ ( c ) ) ] } .
Therefore, we obtain
| P 1 ( u , v ) ( τ 2 ) P 1 ( u , v ) ( τ 1 ) | 0 , as τ 1 τ 2 .
Analogously, we can obtain the following inequality:
| P 2 ( u , v ) ( τ 2 ) P 2 ( u , v ) ( τ 1 ) | 0 , as τ 1 τ 2 .
Hence, the set P Φ is equicontinuous. Accordingly, the Arzelá–Ascoli theorem implies that the operator P is completely continuous.
Finally, we show the boundedness of the set Ξ = { ( u , v ) X × X : ( u , v ) = μ P ( u , v ) , 0 μ 1 } . Let any ( u , v ) Ξ , then ( u , v ) = μ P ( u , v ) . We have, for all z [ c , d ] ,
u ( z ) = μ P 1 ( u , v ) ( z ) , v ( z ) = μ P 2 ( u , v ) ( z ) .
Then, we obtain
u ( u 0 + u 1 u + u 2 v ) A 1 + ( v 0 + v 1 u + v 2 v ) A 2 + u ( A 3 + B 3 ) , v ( u 0 + u 1 u + u 2 v ) B 1 + ( v 0 + v 1 u + v 2 v ) B 2 + v ( A 4 + B 4 ) ,
which imply that
u + v ( A 1 + B 1 ) u 0 + ( A 2 + B 2 ) v 0 + [ ( A 1 + B 1 ) u 1 + ( A 2 + B 2 ) v 1 + A 3 + B 3 ] u + ( A 1 + B 1 ) u 2 + ( A 2 + B 2 ) v 2 + A 4 + B 4 v .
Thus, we obtain
( u , v ) ( A 1 + B 1 ) u 0 + ( A 2 + B 2 ) v 0 M * ,
where M * = min { 1 ( A 1 + B 1 ) u 1 ( A 2 + B 2 ) v 1 ( A 3 + B 3 ) , 1 ( A 1 + B 1 ) u 2 ( A 2 + B 2 ) v 2 ( A 4 + B 4 ) } , which shows that the set Ξ is bounded. Therefore, via the Leray–Schauder alternative (Lemma 3), the operator P has at least one fixed point. Hence, we deduce that problem (5) admits a solution on [ c , d ] , which completes the proof. □

4.3. Existence Result via Krasnosel’skiĭ’s Fixed Point Theorem

Now we apply Krasnosel’skiĭ’s fixed point theorem (Lemma 4) to prove our second existence result.
Theorem 3. 
Let Λ 0 and f , g : [ c , d ] × R 2 R be continuous functions which satisfy the condition ( H 1 ) in Theorem 1. In addition, we assume that there exist two positive constants Z 1 , Z 2 such that, for all z [ c , d ] and u i , v i R , i = 1 , 2 , we have
f ( z , u 1 , v 1 ) Z 1 f ( z , u 1 , v 1 ) Z 2 .
Moreover, assume that A 3 + A 4 < 1 , B 3 + B 4 < 1 and ( d c ) α 1 Γ ( α 1 + 1 ) 1 + ( d c ) α ¯ 1 Γ ( α ¯ 1 + 1 ) 2 < 1 . Then, problem (5) admits at least one solution on [ c , d ] .
Proof. 
Let the operator P , defined by (12), be decomposed into four operators as
M ( u , v ) ( z ) = k c t ψ ( s ) u ( s ) d s + ( ψ ( z ) ψ ( c ) ) γ 1 Λ Γ ( γ ) [ Δ ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ g u v ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ g u v ( ξ j ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s + k c d ψ ( s ) u ( s ) d s I c + α 1 ; ψ f u v ( d ) ) + B ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ f u v ( s ) d s + s = 1 q τ s I α 1 ; ψ f u v ( σ s ) k s = 1 q τ s c σ s ψ ( s ) u ( s ) d s k r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s + k c d ψ ( s ) v ( s ) d s I c + α ¯ 1 ; ψ g u v ( d ) ) ] , N ( u , v ) ( z ) = I c + α 1 ; ψ f u v ( z ) , T ( u , v ) ( z ) = k c z ψ ( s ) v ( s ) d s + ( ψ ( z ) ψ ( c ) ) γ 1 1 Λ Γ ( γ 1 ) [ A ( r = 1 p v r c ς r ψ ( s ) I α 1 ; ψ f u v ( s ) d s + s = 1 q τ s I α 1 ; ψ h 1 ( σ s ) k s = 1 q τ s c σ s ψ ( s ) u ( s ) d s k r = 1 p v r c ς r ψ ( s ) c s ψ ( t ) u ( t ) d t d s + k c d ψ ( s ) v ( s ) d s I c + α ¯ 1 ψ g u v ( d ) ) + Γ ( i = 1 n μ i c η i ψ ( s ) I α ¯ 1 ; ψ g u v ( s ) d s + j = 1 m θ j I α ¯ 1 ; ψ g u v ( ξ j ) k j = 1 m θ j c ξ j ψ ( s ) v ( s ) d s k i = 1 n μ i c η i ψ ( s ) c s ψ ( t ) v ( t ) d t d s + k c d ψ ( s ) u ( s ) d s I c + α 1 ; ψ f u v ( d ) ) ] , R ( u , v ) ( z ) = I c + α ¯ 1 ; ψ g u v ( z ) .
Hence, P 1 ( u , v ) ( z ) = M ( u , v ) ( z ) + N ( u , v ) ( z ) and P 2 ( u , v ) ( z ) = T ( u , v ) ( z ) + R ( u , v ) ( z ) . Let B δ = { ( u , v ) X × X ; ( u , v ) δ } , in which
δ max A 1 Z 1 + A 2 Z 2 1 ( A 3 + A 4 ) , B 1 Z 1 + B 2 Z 2 1 ( B 3 + B 4 ) .
First, we show that P 1 ( x , y ) + P 2 ( u , v ) B δ for all ( x , y ) , ( u , v ) B δ . As in the proof of Theorem 1, we have
M ( x , y ) ( z ) + N ( u , v ) ( z ) A 1 Z 1 + A 2 Z 2 + ( A 3 + A 4 ) δ δ , R ( x , y ) ( z ) + S ( u , v ) ( z ) B 1 Z 1 + B 2 Z 2 + ( B 3 + B 4 ) δ δ .
Accordingly, P 1 ( x , y ) + P 2 ( u , v ) B δ and the condition ( i ) of Lemma 4 is satisfied. In the next step, we show that the operator ( N , R ) is a contraction mapping. For ( x , y ) , ( u , v ) B δ , we obtain
N ( x , y ) ( z ) N ( u , v ) ( z ) I α 1 f x , y f u , v ( z ) 1 ( x u + y v ) I α 1 ( 1 ) ( d ) 1 ( d c ) α 1 Γ ( α 1 + 1 ) ( x u + y v ) ,
and
R ( x , y ) ( z ) R ( u , v ) ( z ) I α ¯ 1 g x , y g u , v ( z ) 2 ( x u + y v ) I α 1 ( 1 ) ( d ) 2 ( d c ) α ¯ 1 Γ ( α ¯ 1 + 1 ) ( x u + y v ) .
In view of (31) and (32), we obtain
( N , R ) ( x , y ) ( N , R ) ( u , v ) ( d c ) α 1 Γ ( α 1 + 1 ) 1 + ( d c ) α ¯ 1 Γ ( α ¯ 1 + 1 ) 2 ( x u + y v ) .
Since ( d c ) α 1 Γ ( α 1 + 1 ) 1 + ( d c ) α ¯ 1 Γ ( α ¯ 1 + 1 ) 2 < 1 , the operator ( N , R ) is a contraction and we conclude that the condition ( i i i ) of Lemma 4 is satisfied. In the next step, we verify the condition ( i i ) of Lemma 4 for the operator ( M , T ) . By using the continuity of the functions f , g , one can see that the operator ( M , T ) is continuous. On the other hand, for any ( u , v ) B δ , as in the proof of Theorem 1, we have
M ( u , v ) ( z ) A 1 ( ψ ( d ) ψ ( c ) ) α 1 Γ ( α 1 + 1 ) Z 1 + A 2 Z 2 + ( A 3 + A 4 ) δ = P * , T ( u , v ) ( z ) B 1 Z 1 + B 2 ( ψ ( d ) ψ ( c ) ) α ¯ 1 Γ ( α ¯ 1 + 1 ) Z 2 + ( B 3 + B 4 ) δ = Q * .
Accordingly, we have ( M , T ) ( u , v ) P * + Q * , which implies that ( M , T ) B δ is uniformly bounded. Finally, it is shown that the set ( M , T ) B δ is equicontinuous. For this aim, let τ 1 , τ 2 [ c , d ] with τ 1 < τ 2 . For any ( u , v ) B δ , similar to the proofs of equicontinuous for the operators P 1 and P 2 in the Theorem 2, we can show that | M ( u , v ) ( τ 2 ) M ( u , v ) ( τ 1 ) | , | T ( u , v ) ( τ 2 ) S ( u , v ) ( τ 1 ) | 0 as τ 1 τ 2 . Consequently, the set ( M , T ) B δ is equicontinuous, and by applying the Arzelá–Ascoli theorem, the operator ( M , T ) will be compact on B δ . Therefore, by applying Lemma 4, problem (5) has at least one solution on [ c , d ] . This completes the proof. □
Example 1. 
Consider the coupled system of ψ-Hilfer-type sequential fractional differential equations with integro-multipoint boundary conditions:
H D 5 4 , 1 2 ; ( 1 e 2 t ) + k H D 1 4 , 1 2 ; ( 1 e 2 t ) x ( t ) = f ( t , x ( t ) , y ( t ) ) , t 1 11 , 12 11 , H D 7 4 , 1 2 ; ( 1 e 2 t ) + k H D 3 4 , 1 2 ; ( 1 e 2 t ) y ( t ) = g ( t , x ( t ) , y ( t ) ) , t 1 11 , 12 11 , x 1 11 = 0 , x 12 11 = 1 7 1 11 5 11 e 2 s y ( s ) d s + 2 13 y 4 11 + 3 17 y 8 11 + 4 19 y 10 11 + 5 23 y 1 , y 1 11 = 0 , y 12 11 = 6 29 1 11 3 11 e 2 s x ( s ) d s + 7 31 1 11 7 11 e 2 s x ( s ) d s + 8 37 x 2 11 + 9 41 x 6 11 + 10 43 x 9 11 .
Here α 1 = 5 / 4 , α ¯ 1 = 7 / 4 , β 1 = 1 / 2 , ψ ( t ) = ( 1 e 2 t ) , ψ ( t ) = 2 e 2 t , c = 1 / 11 , d = 12 / 11 , μ 1 = 1 / 14 , η 1 = 5 / 11 , θ 1 = 2 / 13 , θ 2 = 3 / 17 , θ 3 = 4 / 19 , θ 4 = 5 / 23 , ξ 1 = 4 / 11 , ξ 2 = 8 / 11 , ξ 3 = 10 / 11 , ξ 4 = 1 , υ 1 = 3 / 29 , υ 2 = 7 / 62 , ς 1 = 3 / 11 , ς 2 = 7 / 11 , τ 1 = 8 / 37 , τ 2 = 9 / 41 , τ 3 = 10 / 43 , σ 1 = 2 / 11 , σ 2 = 6 / 11 , σ 3 = 9 / 11 , n = 1 , m = 4 , p = 2 , q = 3 . We find that γ = 13 / 8 , γ 1 = 15 / 8 , A 0.9090586723 , B 0.5135134292 , Γ 0.4618499072 , Δ 0.7876865883 , Λ 0.4788871945 , A 1 1.685246952 , A 2 0.6395331644 , A 3 0.1399736659 , A 4 0.09267043416 , B 1 0.9074990107 , B 2 1.026284484 , B 3 0.06726442842 , B 4 0.1432037148 .
( i ) If the nonlinear unbounded functions f and g are given by
f ( z , u , v ) = 11 e z 1 11 2 ( 11 z + 87 ) u 2 + 2 | u | 1 + | u | + 1 17 cos 2 z + 1 sin | v | + 1 7 ,
g ( z , u , v ) = tan 1 | u | 9 ( 1 + sin 4 z ) + 11 10 ( 11 z + 43 ) 3 v 2 + 4 | v | 1 + | v | + 3 5 ,
then we can verify the Lipchitz conditions as
| f ( z , u 1 , v 1 ) f ( z , u 2 , v 2 ) | 1 8 ( | u 1 u 2 | + | v 1 v 2 | ) | g ( z , u 1 , v 1 ) g ( z , u 2 , v 2 ) | 1 9 ( | u 1 u 2 | + | v 1 v 2 | ) ,
in which Lipchitz constants 1 = 1 / 8 and 2 = 1 / 9 . In addition, we can compute that
1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + A 4 + B 3 + B 4 0.9522963385 < 1 .
Therefore, all assumptions of Theorem 1 are fulfilled and the conclusion of Theorem 1 can be applied—that the coupled system of ψ -Hilfer-type sequential fractional differential equations with integro-multipoint boundary conditions (35) with (36)-(37) has a unique solution on [ 1 / 11 , 12 / 11 ] .
( i i ) Consider the nonlinear functions f and g given by
f ( z , u , v ) = 1 z + 3 + 1 6 u 16 1 + | u | 15 + 1 7 | v | e u 4 ,
g ( z , u , v ) = cos 2 π z + 1 3 + 1 14 1 + sin 4 v 8 | u | + 1 5 | v | 23 2 + v 22 .
Observe that the above two functions f and g are bounded by
| f ( z , u , v ) | 11 34 + 1 6 | u | + 1 7 | v | , | g ( z , u , v ) | 2 3 + 1 7 | u | + 1 5 | v | .
Thus, we choose constants from Theorem 2 by u 0 = 11 / 34 , v 0 = 2 / 3 , u 1 = 1 / 6 , v 1 = 1 / 7 , u 2 = 1 / 7 and v 2 = 1 / 5 . By direct computation, we have ( A 1 + B 1 ) u 1 + ( A 2 + B 2 ) v 1 + A 3 + B 3 0.8773363712 < 1 and ( A 1 + B 1 ) u 2 + ( A 2 + B 2 ) v 2 + A 4 + B 4 0.9394299590 < 1 . Applying Theorem 2, we deduce that the boundary value problem (35) with (38) and (39) has at least one solution on [ 1 / 11 , 12 / 11 ] .
( i i i ) Let the nonlinear bounded functions f and g defined by
f ( z , u , v ) = 11 24 z + 1 2 + 9 16 | u | 1 + | u | + 1 2 sin | v | ,
g ( z , u , v ) = 1 + cos π z + 7 10 tan 1 | u | + 4 5 | v | 1 + | v | .
It is obvious that these two functions are bounded since
| f ( z , u , v ) | 33 16 , and | g ( z , u , v ) | 7 2 .
In addition, the condition ( H 1 ) in Theorem 1 is satisfied with 1 = 9 / 16 and 2 = 4 / 5 . Hence, we obtain A 3 + A 4 0.2326441001 < 1 , B 3 + B 4 0.2104681432 < 1 and
( d c ) α 1 Γ ( α 1 + 1 ) 1 + ( d c ) α ¯ 1 Γ ( α ¯ 1 + 1 ) 2 0.9938694509 < 1 .
Therefore, problem (35) with (40) and (41) has at least one solution on [ 1 / 11 , 12 / 11 ] by using the benefit of Theorem 3. Finally, we give a remark that Theorem 1 cannot be used for this problem because
1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + A 4 + B 3 + B 4 3.234185965 > 1 .

5. Conclusions

In this paper, we investigated a coupled system of fractional differential equations involving ψ -Hilfer fractional derivatives, supplemented with integro-multi-point boundary conditions. Firstly, we proved the equivalence between a linear variant of the system (5) and the fractional integral Equations (7) and (8). After that, the existence of a unique solution for the system (5) was proved by using Banach’s fixed point theorem. The Leray–Schauder alternative and Krasnosel’skiĭ’s fixed point theorem were used to obtain the existence of solutions for the system (5). Moreover, examples were constructed to illustrate our main results. The obtained results are new and enrich the literature on coupled systems for nonlinear ψ -Hilfer fractional differential equations. The used methods are standard, but their configuration on the problem (5) is new.

Author Contributions

Conceptualization, A.S., S.K.N. and J.T.; methodology, A.S., C.N., S.K.N. and J.T.; formal analysis, A.S., C.N., S.K.N. and J.T.; funding acquisition, J.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by King Mongkut’s University of Technology North Bangkok. Contract No. KMUTNB-62-KNOW-30.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mainardi, F. Boundary Value Problems for Hilfer Type Sequential Fractional Differential Equations and Inclusions with Integral Multi-Poin Boundary Conditions. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Berlin, Germany, 1997; pp. 291–348. [Google Scholar]
  2. Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Chicago, IL, USA, 2006. [Google Scholar]
  3. Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
  4. Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
  5. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  6. Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
  7. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
  8. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  9. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
  10. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
  11. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
  12. Almeida, R.A. Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
  13. Abdo, M.S.; Panchal, S.K.; Saeed, A.M. Fractional boundary value problem with ψ-Caputo fractional derivative. Proc. Math. Sci. 2019, 129, 1–14. [Google Scholar] [CrossRef]
  14. Vivek, D.; Elsayed, E.; Kanagarajan, K. Theory and analysis of ψ-fractional differential equations with boundary conditions. Commun. Pure Appl. Anal. 2018, 22, 401–414. [Google Scholar]
  15. Wahash, H.A.; Abdo, M.S.; Saeed, A.M.; Panchal, S.K. Singular fractional differential equations with ψ-Caputo operator and modified Picard’s iterative method. Appl. Math. E Notes 2020, 20, 215–229. [Google Scholar]
  16. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  17. Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
  18. Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouvill fractional derivatives. Frac. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
  19. Furati, K.M.; Kassim, N.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 12, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
  20. Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
  21. Wang, J.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
  22. Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
  23. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 2021, 44, 1438–1455. [Google Scholar] [CrossRef]
  24. Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
  25. Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
  26. Wongcharoen, A.; Ntouyas, S.K.; Tariboon, J. On coupled systems for Hilfer fractional differential equations with nonlocal integral boundary conditions. J. Math. 2020, 2020, 2875152. [Google Scholar] [CrossRef]
  27. Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
  28. Phuangthong, N.; Ntouyas, S.K.; Tariboon, J.; Nonlaopon, K. Nonlocal sequential boundary value problems for Hilfer type fractional integro-differential equations and inclusions. Mathematics 2021, 9, 615. [Google Scholar] [CrossRef]
  29. Sousa, J.V.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  30. Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
  31. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
  32. Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. UspekhiMat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Samadi, A.; Nuchpong, C.; Ntouyas, S.K.; Tariboon, J. A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions. Fractal Fract. 2021, 5, 162. https://doi.org/10.3390/fractalfract5040162

AMA Style

Samadi A, Nuchpong C, Ntouyas SK, Tariboon J. A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions. Fractal and Fractional. 2021; 5(4):162. https://doi.org/10.3390/fractalfract5040162

Chicago/Turabian Style

Samadi, Ayub, Cholticha Nuchpong, Sotiris K. Ntouyas, and Jessada Tariboon. 2021. "A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions" Fractal and Fractional 5, no. 4: 162. https://doi.org/10.3390/fractalfract5040162

APA Style

Samadi, A., Nuchpong, C., Ntouyas, S. K., & Tariboon, J. (2021). A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions. Fractal and Fractional, 5(4), 162. https://doi.org/10.3390/fractalfract5040162

Article Metrics

Back to TopTop