Some New Results on Hermite–Hadamard–Mercer-Type Inequalities Using a General Family of Fractional Integral Operators
Abstract
:1. Introduction
2. Hermite–Hadamard–Mercer Inequalities via the Raina’s Fractional Integral Operator
3. Generalized Hermite–Hadamard–Mercer-Type Inequalities via Raina’s Fractional Integral Operator
4. Related Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matkovic, A.; Pecaric, J.; Peric, I. A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 2006, 418, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Mercer, A.M. A Variant of Jensen’s Inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Abramovich, S.; Baric, J.; Pecaric, J. A variant of Jessen’s inequality of Mercer’s type for superquadratic functions. J. Inequal. Pure Appl. Math. 2008, 9, 62. [Google Scholar]
- Baric, J.; Matkovic, A. Bounds for the normalized Jensen Mercer functional. J. Math. Inequal. 2009, 3, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.H.; Rashid, S.; Hammouch, Z.; Chu, Y.M. New fractional estimates for Hermite-Hadamard-Mercer type inequalities. Alex. Eng. J. 2020, 59, 3079–3089. [Google Scholar] [CrossRef]
- Ali, M.; Khan, A.R. Generalized integral Mercer’s inequality and integral means. J. Inequal. Spec. Funct. 2019, 10, 60–76. [Google Scholar]
- Anjidani, E. Jensen-Mercer Operator Inequalities Involving Superquadratic Functions. Mediterr. J. Math. 2018, 15, 31. [Google Scholar] [CrossRef]
- Anjidani, E.; Changalvaiy, M.R. Reverse Jensen-Mercer type operator inequalities. Electron. J. Linear Algebra 2016, 31, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.J.; Matic, M.; Pecaric, J. Two mappings in connection to Jensen inequality. Pan-Am. Math. J. 2002, 12, 43–50. [Google Scholar]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen- Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Moradi, H.R.; Furuichi, S. Improvement and Generalization of Some Jensen-Mercer-Type Inequalities. J. Math. Inequal. 2020, 14, 377–383. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zhang, Z.H.; Wu, Y.D. Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Agarwal, R.P.; Luo, M.-J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 204, 5–27. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 121–128. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Harjule, P.; Jai, R. A general fractional differential equation associated with an integral operator with the H-function in the kernel. Russ. J. Math. Phys. 2015, 22, 112–126. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Set, E.; Yaldız, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Öğülmüş, H.; Sarıkaya, M.Z. Hermite-Hadamard-Mercer Type Inequalities for Fractional Integrals. Available online: https://doi.org/10.13140/RG.2.2.30669.79844 (accessed on 12 April 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Set, E.; Çelik, B.; Özdemir, M.E.; Aslan, M. Some New Results on Hermite–Hadamard–Mercer-Type Inequalities Using a General Family of Fractional Integral Operators. Fractal Fract. 2021, 5, 68. https://doi.org/10.3390/fractalfract5030068
Set E, Çelik B, Özdemir ME, Aslan M. Some New Results on Hermite–Hadamard–Mercer-Type Inequalities Using a General Family of Fractional Integral Operators. Fractal and Fractional. 2021; 5(3):68. https://doi.org/10.3390/fractalfract5030068
Chicago/Turabian StyleSet, Erhan, Barış Çelik, M. Emin Özdemir, and Mücahit Aslan. 2021. "Some New Results on Hermite–Hadamard–Mercer-Type Inequalities Using a General Family of Fractional Integral Operators" Fractal and Fractional 5, no. 3: 68. https://doi.org/10.3390/fractalfract5030068
APA StyleSet, E., Çelik, B., Özdemir, M. E., & Aslan, M. (2021). Some New Results on Hermite–Hadamard–Mercer-Type Inequalities Using a General Family of Fractional Integral Operators. Fractal and Fractional, 5(3), 68. https://doi.org/10.3390/fractalfract5030068