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1. Introduction

Convex functions have a very useful structure in terms of both definition and proper-
ties. This concept has an important role in the theory of inequality. This class of functions
has many applications in the different branches of mathematics, and many important
inequalities are obtained with the help of this class of functions. Hermite-Hadamard
inequality, Jensen inequality, and Mercer inequality, which are well known in the litera-
ture, are some of them. Jensen inequality has been caught attention of many researchers,
and many articles related to different versions of this inequality have been found in the
literature. Jensen’s famous inequality can be given as follows:

Let0 < xy <xp <...<xyand y = (y1, 4z, ..., in) be non-negative weights such
that Y/ ; i = 1. The famous Jensen inequality (see [1]) in the literature states that f is
convex function on the interval [a, b|; then

f(Zn: kak> < <Xn: Plkf(k)>,
= )

where Vx; € [a,b] and all y € [0,1], (k= 1,n).
A new variant of Jensen inequality that has been established by Mercer can be pre-
sented as follows:

@

Theorem 1. ([2]) Let f : [a,b] C R — R be a convex function on [a, b] then

k=1

f<ﬂ+b— fﬂm) < f(a)+ f(b) —}:Zlukf(xk)

n
for each xy. € [a,b] and py € [a,b] (k =1,n) with Y e = 1.
k=1
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Recently, many studies have been performed on the Jensen-Mercer inequality,
see ([1,3-5]). For more recent and related results connected with Jensen—-Mercer inequality,
see ([3,6-11]).

Let us now recall another important inequality obtained by using convex functions.
The Hermite-Hadamard inequality has been the focus of many researchers in the fields
of inequality theory, numerical analysis, and applied mathematics for nearly a hundred
years. A great number of generalizations, expansions, new variants, and improvements
have been made regarding this inequality (see, e.g., [12]). The following inequality

(50 < 52 [ rwan < LOLIO),

2 b—a 2

holds for convex functions and known as Hermite-Hadamard inequality. If f is concave,
both inequalities hold as a reverse direction.

Recently, a modern direction of research has been to investigate various likely ways to
define fractional integrals and derivatives in fractional calculus. Fractional operators differ
from each other with their kernel structures and further properties. Most of them have a
general form of the previous operators. Motivated by this, several fractional operators are
introduced that generalize ordinary integral operators.

Let us recall the fractional integral of Riemann-Liouville and its general form, which
is called Raina’s fractional integral operator.

Definition 1. Let f € Li[a, b]. The Riemann—Liouville integrals [y, f and J;_f of order & > 0
with a > 0 are defined by

18 F(x) = r(l) [0, x> a @)
and ) ) .
- f) = 5 [ =t x < 3)

respectively, where T(x) = [~ e 'u®'du. Hereis JO, f(x) = J)_f(x) = f(x).

In addition, Raina [13] defined the following results related to the general class of
fractional integral operators.

0@ o(k) .
oA (X) = F 5 (x) —kgomx (o,A > 0;|x| <R), (4)

where the coefficients o (k) (k € N = NU {0}) are a bounded sequence of positive real num-
bers and R is the set of real numbers. With the help of (4), Raina [13] and Agarwal et al. [14]
defined the following left-sided and right-sided fractional integral operators, respectively,
as follows:

(Tonwef )0 = [P IF 0= 00 (x>a>0), G

b
(Trp sl ) ) = [t =2 E 0t =x)1f (A ©<x<b),  ©
where A,p > 0, w € Rand f(t) is such that the integral on the right-hand side exits.
Itis easy to verify that 77, .. .f(x) and J, oA b—f (x) are bounded integral operators
on L(a,b) if
M= Fyralw(a—b)P] < eo.

In fact, for f € L(a,b), we have
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1T assof (111 < MO~ )|l

and

1T p—f ()l < (B — )| f|1

it = ([ irorear)

Here, many useful fractional integral operators can be obtained by customizing the
coefficient o (k).

where

Remark 1. If we choose A = a, 0(0) = 1 and w = 0 in (5) and (6), we obtain the classical left-
and right-RL fractional integrals (2) and (3), respectively.

To provide more information about fractional integral operators and applications to the
theory of inequality, we recommend the following papers to interested
readers ([15-21]).

In this article, motivated by the Jensen—-Mercer inequality and Raina’s fractional
integral operator, we establish new Hermite-Hadamard-Mercer-type integral inequalities
for convex functions.

2. Hermite-Hadamard-Mercer Inequalities via the Raina’s Fractional
Integral Operator

In this section, we obtain some new Hermite-Hadamard-Mercer inequalities using
the Jensen-Mercer inequality via Raina’s fractional integral operator.

Theorem 2. Suppose that f : [a,b] — R is a convex function. Then

Sl 2)

< F@+F0) - g (e )0+ T u0] o)
< fla)+ f(0) - F(55Y)
and
f (a +b— "Tﬂ’>
S - )Af;,ﬁlﬂ[ (y—2)"] [(jpojm(ﬁb—y)*;wf)(wrb*x)+( p‘TA,(Hb—X)*;wf)(aer*y)} (8)
< [flab X);ﬂway)
< fla)+ f(b) - LW

forall x,y € [a,b], x <y,and A, p,w > 0.

Proof. Using the Jensen-Mercer inequality, we can write

favb-150) < flay+ ) - LI ©)

for all x1,y1 € [a,]]. By changing of the variables x; = tx + (1 —t)yand y; = (1 —t)x + ty
for x,y € [a,b] and t € [0,1] in (9), we obtain

f<a+b—x+y) f( >+f(b)_f(tx+(1_t)y);f((l_t)x+ty)‘ (10)
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Multiplying both sides of (10) by t)‘_lfgl 1lw(y — x)Pt°] and then integrating the resulting
inequality with respect to t over [0, 1], we have

fg,AH[W(y—x)p]f(aer— x;y>

F0) + FO)) [ P F oty — 2P
5| [ E e - xpe e -

IN

+ /0 1 PLFS [wly — PRI F((L— Hx + ty)dt]
= [f(a)+ f(O)F s lw(y — x)F]

S o (52 g

f () e (575) g

= [f(a) + f(0)|F)p pa[w(y —x)f]
5 | [ 0 e
+(y—1x))‘ /xy(u - x)’\*l}'g,)\[w(u - x)p]f(u)du}

namely

7%+1[W(y— x)F] <ﬂ+b %) a1

< [fla)+ f(O)Fpiqlw(y —

T [Tl ) ) + (T8 )]

and so the first inequality of (7) is proven. For the proof of the second inequality (7), we
first note that if f is a convex function, then, for t € [0,1], it yields

f(x—lz—y) _ f<tx—|—(1—t)y12L(1—t)x+ty) (12)
o [+ A -ty +f(A-t)x+ty)
- 2

Multiplying both sides of (12) by tA_l]:g, 2lw(y — x)Pt?] and then integrating the
resulting inequality with respect to t over [0, 1], we obtain

Foalot =2 (52)

3| [ Pty = el (1 e

IN

+ /01 P FT w(y — x)PETF((1—t)x + ty)dt]
1

= 57— a0 + (TN )]

and so

_f<x42rl/) oaslw (y—x)P]Zz(y_lx)A[( kol )W)+ ( p‘fA/y,;wf)(x)}. (13)
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Adding f(a) + f(b) to both sides of (13), we find the second inequality of (7).
Now, we prove inequality (8). From the convexity of f, we have

oty a+b—xi+a+b—y;
f<a+b — ) = f( 5

1
< sUlatb—x)+flat+b-y)] (14)
for all x1,y1 € [a,b]. By changing the variables a +b —x; = t(a+b—x)+ (1 —1)

(a+b—y)anda+b—y; =(1—-t)(a+b—x)+t(a+b—y)forx,y € [a,bland t € [0,1]
in (14), we find that

f(a+b—x+y> (15)

2
1
< E[f(t(a—i—b—x)+(1—t)(a+b—y))+f((1—t)(a+b—x)—l—t(a—i—b—y))].
Multiplying both sides of (15) by t)"l]-'g/ J|lw(y — x)Pt°] and then integrating the
resulting inequality with respect to t over [0, 1], we have

]:gﬂl[w(]/—x)p}f(ajub_ x;y>

IN

% [/01 LG Jw(y — x)P#]f(ta+b—x) + (1—t)(a+b—y))dt
+ ./(;1 PUFS [w(y — x)PEIF((L— ) (a+b—x) + ta+b y))dt}
1

— s =P At = (0 b= )Pl

a+b—x B . ,
n /mfy ((a+b—x) =) LF7, [w((a+b —x) — u) ]f(u)du]
1

— 20— x) |:<‘7Pli/\,(a+b—y)+;wf) (a+b—x)+ (JP‘TA,(M,_X),Wf) (a+b— y)}

and so

f§A+1[W(y—x)”]f(a+b— x;y)

= 2(]/—1x)A [( PLTA'(Hb—y)*;wf) (@a+b—x)+ (jp‘TA,(a+b—x)*;wf) (a+b— y)} :

The proof of the first inequality of (8) is completed. On the other hand, using the
convexity of f, we can write

flHa+b—x)+ (A —t)(a+b—y)) <tfla+b—x)+ (A —t)f(a+b—y)
and
f(A=t)a+b—x)+tla+b—y) <A—-t)f(a+b—x)+tf(a+b—y).
By adding these inequalities and using the Jensen—Mercer inequality, we have

fHa+b—x)+(1—-t)(a+b—y))+f(1—t)(a+b—x)+ta+b—y))
fla+b—x)+ fla+b—y)
2[f(a) + f(b)] = [f(x) + f(y)]- (16)
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Multiplying both sides of (16) by t/\_l}'g 2|lw(y — x)PtP] and then integrating the
resulting inequality with respect to t over [0, 1], we obtain the second and third inequalities

of 8). O
Theorem 3. Let f : [a,b] — R be a convex function. Then

fla+b—2)
2)\71
=N w(y—) 3]

IN

X (Jpﬁ (a+h7L+V) wl ) (a+b—y)+ (JP‘TA,([,+;,%+;wf> (a+b— x)]

< fla)+ flo) - T
forall x,y € [a,b], x <yand A, p,w > 0.

Proof. To prove the first inequality of (17), by writing x; = §x + %y and i1 =

for x,y € [a,b] and t € [0, 1] in the inequality (14), we get

(ons-52) < [ona (7)o (oms- (5

the resulting inequality with respect to t over [0, 1], we have

1 x+y
ZJ:I‘;AH{w(y—x)Pzp}f(a—ﬁ-b— > )

Jx+3v)

Then, multiplying both sides of (18) by t}~1.F g A [w(y —x)f (5)p ] and then integrating

e )
o () oo (e )

(17)

2—t t
Tty

(18)

A a+b— Y+y
= o b Al = (o b))
+ a:bx’; ((a+b—x)— u)A_lj:gA[w((a +b—x)— u)P]f(u)du}
2r - .
= W —x)" _<~7P,A,(a+b—";y);a,f) (a+b—-y)+ (jp//\,(a+b_;(;ry)+;wf) (a+b— x)}
and so
f(a +b— xery)
ZAfl
<

(v = )M Fp [0ly x5

|:(ij?\ b x+y);wf> (a+b—y)+ (‘7;)\,@%

x42ry)+;wf> (a—l—b—x)}

The first inequality of (17) is proven. For the proof of the second inequality of (17), by

using Jensen—Mercer inequality, we obtain

f(”“’— <;x+ zz_ty» < f(a)+ f(b) — [;f(x)—FZ_t
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" flavo- (B3 g)) < s+ 100 - [P0+ 370
By adding these inequalities, we have
f(a+b— <£x+22_ty)> +f(a+b— (22_tx+;y>>
< 2[f(a) + f(B)] = (f (x) + f(w))- (19)

Multiplying both sides of (19) by t*~1.F oA {w(y —x)P (%)p} and then integrating the
resulting inequality with respect to t over [0, 1], we find the second inequality of (17). [

Lemma 1. Let f : [a,b] — R be a differentiable mapping on (a,b) witha < b. If f' € La,b],
then the following equality for fractional integral holds:

]:;;Aﬂ [w(y — x)p]f(a th-y) -;—f(a oy 2(y i x)A
(T ars of) @+ 0 =9+ (T5r (arp gy ) (0= 5)] 20)

= == {/01 P FG lwly —x)P)f(a+b — (tx+ (1= t)y))dt
- [0 el =P A= ) - o+ (- )]
forall x,y € [a,b],x <y, A,p,w >0andt € [a,b].

Proof. It suffices to note that

=Y ; x(Il — D), 1)
where
1
b= [ PRty PRI b (s (- )
1
= PR alwly - x)PtP]f(a w12 0y) 22
), y — X 0
- [ P - 0PI - (et (- )
Forplwly —x)f]f(a+b—x) 1 4
= pA+1 = - (y — x)A T (jpfx\,(a—l-h—x)’;wf) (a+b—y)
and

b= [0 Elely 2P0 0P Gt b (i (- o)
1

= (1-0H'F7, 4wy —x)P1— t)p]f(” +b—(tx+ (1 -1Hy))

pA+1 = (23)
1
y i p /O (1- f)A_lfﬁ,A[w(y —x)P(1=t)P]f(a+b— (tx + (1 —t)y))dt
Fornlwly—x)Plf(a+b—y) 1
_ Al T 4 TR (%‘fA,(a+b_y)+;wf>(a+b—x).

By combining (22) and (23) with (21), we get (20). O
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Lemma 2. Let f : [a,b] — R be a differentiable mapping on (a,b) witha < b. If f' € L[a, b, then
2)L—1 - ) . .
W jp,)\,(d«kb—%rr;wf (IZ +0— x) jp A, ﬂ+b x+1/) f (ﬂ +b— y)
1 +
—Foast {w(y—x)P?}f(u+b_x2y> (24)

oy —x[ 1y y 2t t
= 2| [ rrato - ol (aro- (2 g Jar

- /01 tAf;’,m [w(y — x)Pt°]f’ (a +b— (%x + ?}/))dt}

forall x,y € [a,b], x <y, A,p,w >0,and t € [0,1].

Proof. Let
1 t\F 2t t
_ A /
I = [/(Jt]—'pl/\ﬂ[w(y—x)f’(Z) }f (a—l—b—( 7 x+2y>)dt
1 £\° t 2—t
A !
—/Ot]-'g,)&l{w(y—x)f)(z) }f (a+b—<2x+2 y))dt}
= b—-1
Note that

. /01 . {w(yx)p(;ﬂf,(ﬁb (;HZW))

_ pZan [aﬁ; (] f(a +b— (tx + zz_ty»

e oo (e (3

2F a1 [w(y—x)le—p} x+y
= fla+b———=
y—x 2

e () oo (255

By substitutingu =a+ b — (%x + %y) , we get, after some computations,

2F | wly — x| -
- 0,A+1 20 x+y 2
L = y—Xx f(a—l—b_ 2 > B (y,x)/\—s-l (‘7;&(,1_5_[,_";#)@]() (a+b—y).
(25)
By proceeding with a similar process, we obtain
! Ao AN / 2—t t
L = /0 f }-P,)\Jrl {W(V—x)p(2> }f (zH—b— ( > x—i—zy))dt (26)
2}- [a)(y - x)pi} A1
. 0,A+1 20 x+y 2 ”
- y—x f<a+b— 5 >+(y—x))‘+1 (%A,(Hb_x;y)hwf)(a+b—x).

By using (25) and (26), it follows that
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L—-1

2A+1
(y =1 [(JPO:AW—%ﬁwf ) (@+b-x)+ (“7 oA (b)) ) (a+b— y)}

—f(a+b— x;—y) ( 4F a1 {wal/x—x)pzlp}).

Thus, by multiplying Y;= on both sides of the above equality, we get (24). [

3. Generalized Hermite—-Hadamard-Mercer-Type Inequalities via Raina’s Fractional
Integral Operator

Theorem 4. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If |f'| is convex
on [a, b), then the following inequality holds for fractional integral operators:

Drale - =0 etbon) 1

X [(jpf?\,(a+b7x)’;wf> <a +b— ]/) + (jp[f)\,(aerfy)*;wf) (ll +b— x)} | (27)

< - OF ety -2 I @]+ 17 @) - L]

where .
oo (k) = o (k) (1 - 27‘+Pk>
forall x,y € [a,b], x < yand A,p,w > 0.

Proof. By means of the Lemma 1 and the Jensen—-Mercer inequality, we find that

f;’,A+1[w(y - x)p}f(a o —x)2+f(a LB 2(y 1 x)A
X [(*7;)0/\ (a+b— x)*wf) (a +b— y) + (Jp(i/\,(aerfy)*;wf) (a +b— x)} ’
< L2 [P Rty — 0P8 - (1 ) Fpalely — 0P (- 1)
|f (a4+b— (tx+ (1 - t)y))|dt
< / (A FG lwly —x)P1] — (1= ) FG o [wl(y — 1) (1 - bF]|

[If( )+ £/ (B)] = (t1F (0l + (1= 1) f'(y)) ]t
- { /01 (1= DTy lwly = x)P (1= 1)) = P F i [wl(y — )]
x[1f'(@)] + £ ()] —(tlf’(X)\+(1—f)|f’(1/)|)]dt
# f] [P Fpaloty =00 = (= 0P 7 sty =011y

<[If @]+ 1f (0)] = (tf ()] + (1= f)lf’(y)l)]df}

— X
= yT(h + Lo).

By calculating L, and Ly, we obtain
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L= (f@l+If®)) ( L A= F o —xr =0 = A7 oty - x>f’tﬂ1]dt)
—If' ()] ( | =0 E o= == [T PE el - x)”tp}dt)

+f )] ( | A= F e —xra - el [ 1= 0P el - x>PtP]dt>

= (If @I +1f @) (Fhalol =) = FR oty — 7))
I @ (FR oty = 0] = Fo oty = x)))
W (Floly =2 = Fos oy — )]

! ! 1 1
= (lf ({1)|—|-|f (b)|)</\+pk+l_2/\+pk(/\+pk+1))

! 1 1
{'f (x)<(A+pk+1)(A+pk+2) - 2A+Pk+1(A+pk+l)>

HFO (s - '
PO Tk vz~ 2 (A 5 ok 1)
and

-1

L = ([f'(a)|+|f (b)) ( /1 [Mf;,im[w(y — )Pt = (1= N Fo i fw(y — )P (1— t)fﬂ dt)

P[] ol -0l [0 =00 ol - 0P - )

2

PO [ 0D F ol - 00— [T 05 el - 0P - )

= (If @I +1f @) (Fhalol =) = FR oty —x)F))
~If @ (Faloly — 0] - Foy oy — )]
HFW(FRaloly =0 = Fo oy — x)°)

! ! 1 1
= (If' (@) +If (b)|)</\—|—pk—|—l2/\+Pk(/\+pk+l))

! 1 1
_{|f (x)|<)t+pk+2 B 2A+Pk+l()\+pk+1)>

! ! !
+f (y>|<(/\+pk—|—1)()\+pk+2) _2)‘+Pk+1()\+pk+1))}

where
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a1 (k)
72 (k)
a3(k)
o3 (k)
o5 (k)

s(k)

1
A+pk+1 zAwH%A+pk+U>

2A+PkH>Af%pk—%l)>

2A+ﬂk+2 A—+pk—+2)>

1
A-+pk4—2 2A+MH2(A—+pk—+2)>

1 1 1
< A+ pk+2 ZNWH%A+pk+2f+A+pk+1_2NWH%A+pk+D)'

1
2/\+pk+1 A +pk + 1) 2/\+pk+2(/\ +pk 4 2) )
By adding L; and L, we obtain the inequality (27). O

Theorem 5. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is convex
on [a, b], then the following inequality holds for fractional integral operators:

2A—1 . .
’ (]/ _ x)/’\ [(jp,)n,(a-&-b—%)*;wf) (Ll +b- x) (jp/\ a+b— H")’;wf) (a +b— ]/):|

X+ 1
—f(a+b— 2y>}'l‘;/\+l{w(y—x)92—p}

(y —x)F? w(y— x)P% / ’
. p,mz[ y=9'3] a1+ 0y - L] o8
forall x,y € [a,b], x <y,and A, p,w > 0.

Proof. Using the Lemma 2 and Jensen—-Mercer inequality, we find

2A71
LyxV{C%%mwﬁﬂwf>W+b_x) (Zﬂ»wbx”rwf)W+b_yﬂ

(a0 =) Fra [ 5]

lif{é MI@Hlkxy—xw(é)i ’(a+b—(2;tx+éy)>Pt
Lol (@Yo ()
L ra[ew-2e (3) | @i+ o= (e i wr) e
s [ e msafev-a ()] r@i+ o (Srws 2]}
1
|

IN

IN

2
(y - x)]:p,)L+2 {w(y - x)/J 20]

Aflf”(X)l-%lf”(y)l}.
2
O

Theorem 6. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'|7 is convex
on [a,b], q > 1, then the following inequality holds for fractional integral operators:
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Z)L_l a o
' b= {(jp//\/(ﬁh_#)ﬁwf) (a+b—x)+ (JPIA/(a+b_XT+y),;wf> (a+b— y)}

—f(a+b— x;y)ﬂ‘iw {w(y—x)pzlp] @9)

- X
< T F ey o)

><|:(|f/(a)|q+|f/(b)|q3fl(x)q+|f/(y)|q)q+ (|f/(a)|q+|f/(b)|q7 |f’(x)q+3|f/(y)|q)q:|

4 4

where )

1
7= ()

forallx,y € [a,b], x <y, A, p,w > 0,and%+ % =1

Proof. From Lemma 2, using Holder’s inequality, we have

ZAfl
’ (y —x)A ij‘iuu+b—%+;wf ) (a+b—x)+ (%ﬁ,mb-%;wf > (a+b— y)]

—f(a—f—b—yc—zky) oA+ {w(y—x)pzlp]

IN
<
|
=
7N
é“w
=
—
[
-
S
+
N
| — |
g
P
<
|
=
S—
)
RS
|
N——— —
_
S—
=
[
ey
~_
I

2t ¢
f’(a+b—< 5 x+§y

f’<a+b— <£x+ 22_ty)>

a9\ 1
dt) +(/
0
pk 1

_ oy i c(k)[lwf(y — x) md (/1 t(/\erk)p);
0

uty}
4 & T(A+pk+1)
x{(/ol plovo- (gter b)) s ([l (avo- (b 250)) W}.

Using the Jensen—Mercer inequality and taking into account the convexity of |f’|1,
we have
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IN

2A—l
‘ (y —x)* [(jptim(wb—"?)*;wf) (a+b—2x)+ (j;A,(aw—";”);wf) (a+b— y)}

—f<‘1 +b— xz+y> oA+l {w(]/ - x)pzlp]

y—x i o (k)[|ewl*(y — x)P* ] < 1 >},
= T'(A+pk+1) Ap+ pkp +1

N 5w )ar)

N\
;\\l

(@) + 1 ()] — (

([ 1r@eeiren - (e + 2 we)a) }
y

35

; = T(A+pk+1)
- l('f’(mlq i - @I If'(y)ﬁ); + (lf’(a)lﬂ +1p - L +3lf’<y>l‘7> ﬂ

o (k)[|w[*(y — x)P* ] 1 7
()\P + pkp + 1)

4 4

— X
L F oty —x))

and so the proof is completed. [

4. Related Results

By using a similar arguments to the proof of the theorems that were obtained in the
main results section, we will now use E instead of F, by which we will obtain the following
new estimates for Prabhakar fractional integral operator.

Before giving the new results, let us remember the Prabhakar operator.

The function E; ) (x) is introduced by Prabhakar [22] in the following form

o k
FL00 = ¥ iy (AT <SRG >0 @0
—0 :

where (7)x is Pochhammer symbol ([23],Section 2.1.1)

Mo=1(e=v(r+1)...(r+k—-1), (k=12,...).

This function is reduced to the Mittag—Leffler function for y = 1.
Prabhakar defined the following integral operator containing the function (30), in
the kernel:

() pwaf ) @) = [ =0V (e — P (1)

a

where f € [4,b],0 < a <t <b < oandp,A,v,w € Cwith R(p), R(A) > 0. Itis
possible to define right-sided fractional integral operator in a natural way analogous to (6)
as the following;:

(6T f) ) = [ (0B ot — P (00
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Theorem 7. Suppose that f : [a,b] — R is a convex function. Then

f<a+b—x;ry>

fla)+ £(0) = 5

1

IN

(y— x)’\EZ/\+1[w(y —x)P] {(ggf)\,ﬁ;wf) (y) + (E;/\,yf;wf)(x)}

IN

fa) -+ 50 - £( 554

and

f(aerfx;y)

1
ST ET, oy — )] (Epparryyesl) @+ b=+ (€], 1yl @+ b =)
fla+b—x)+fla+b—y)

2

< fla)+ - [T

<

forall x,y € [a,b], x <y,and A, p,w > 0.

Proof. The assertion follows from the definition of Prabhakar fractional integral operators
in the proof of Theorem 2. [

Some similar results can be obtained for Theorem 3—6 Prabhakar fractional integral
operators. We omit the details for the readers.

5. Conclusions

In this paper, we gave new Hermite-Hadamard-Mercer-type inequalities for convex
functions. In order to prove these inequalities, we used the Raina’s fractional integral
operators and Jensen-Mercer inequality. Our results are the generalizations of the Hermite—
Hadamard-Mercer-type inequalities that ones given via Riemann-Liouville fractional
integrals in [24].
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