Multi-Model Selection and Analysis for COVID-19
Abstract
:1. Introduction
2. Integer-Order and Fractional Models
3. Four Means for Model Evaluation and Analysis
3.1. The Corrected Akaike Information Criterion (AICc)
3.2. The Bayesian Information Criterion (BIC)
3.3. The Root Mean Square Error (RMSE)
3.4. The Pearson’s Correlation Coefficient (R)
4. Model Evaluation and Analysis Based on the Real Data
4.1. The Fractional Models Can Better Fit the Real Data than the Corresponding Integer-Order Models
4.2. No Model Is Reliable for Long-Term Forecasting Based on the Early-Stage Real Data
4.3. The Fractional SEIR-Q and SEIR-QD Models Can More Accurately Describe the COVID-19 Spread Trends
4.4. The Inflection Point of the Real Data Is Vital for Prediction
4.5. A Single Mean Is Insufficient to Evaluate the Model’s Prediction Capability
4.6. All of the Basic Reproduction Number Heavily Depend on Contact Rate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 12 September 2021).
- Giordano, G.; Blanchini, F.; Bruno, R. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Shaikh, I.N.; Nisar, K.S. A mathematical model of COVID-19 using fractional derivative outbreak in India with dynamics of transmission and control. Adv. Differ. Equ. 2020, 2020, 373. [Google Scholar] [CrossRef]
- Rihan, F.A.; Alsakaji, H.J.; Rajivganthi, C. Stochastic SIRC epidemic model with time-delay for COVID-19. Adv. Differ. Equ. 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Rihan, F.A.; Al-Mdallal, Q.M.; AlSakaji, H.J. A fractional-order epidemic model with time-delay and nonlinear incidence rate. Chaos Solitons Fractals 2019, 126, 97–105. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Al-Mdallal, Q.M. Fractional order mathematical modeling of COVID-19 transmission. Chaos Solitons Fractals 2020, 139, 110256. [Google Scholar] [CrossRef]
- Ma, W.Y.; Zhao, Y.T.; Guo, L.H.; Chen, Y.Q. Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model. ISA Trans. 2021. submitted. [Google Scholar]
- Comunian, A.; Gaburro, R.; Giudici, M. Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic. Phys. D Nonlinear Phenom. 2020, 413, 132674. [Google Scholar] [CrossRef]
- Yang, Z.F.; Zeng, Z.Q.; Wang, K. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis. 2020, 12, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Kuniya, T.; Inaba, H. Possible effects of mixed prevention strategy for COVID-19 epidemic: Massive testing, quarantine and social distancing. AIMS Public Health 2020, 7, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.R.; Yang, W.Y.; Zhang, D.Y.; Zhuge, C.J.; Hong, L. Epidemic analysis of COVID-19 in China by dynamical modeling. arXiv 2020, arXiv:2002.06563. [Google Scholar]
- Tang, B.; Bragazzi, N.L.; Li, Q.; Tang, S.; Xiao, Y.; Wu, J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Modelling 2020, 5, 248–255. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Shafiq, A.; Al-Mdallal, Q.M. On the analysis of number of deaths due to COVID-19 outbreak data using a new class of distributions. Results Phys. 2021, 21, 103747. [Google Scholar] [CrossRef]
- Hedayati, M.; Ezzati, R.; Noeiaghdam, S. New Procedures of a Fractional Order Model of Novel Coronavirus (COVID-19) Outbreak via Wavelets Method. Axioms 2021, 10, 122. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Micula, S.; Nieto, J.J. A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library. Mathematics 2021, 9, 1321. [Google Scholar] [CrossRef]
- Khan, A.; Alshehri, H.M.; Abdeljawad, T. Stability analysis of fractional nabla difference COVID-19 model. Results Phys. 2021, 22, 103888. [Google Scholar] [CrossRef]
- Rajagopal, K.; Hasanzadeh, N.; Parastesh, F. A fractional-order model for the novel coronavirus (COVID-19) outbreak. Nonlinear Dyn. 2020, 101, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Zeb, A.; Egbelowo, O.F.; Erturk, V.S. Dynamics of a fractional order mathematical model for COVID-19 epidemic. Adv. Differ. Equ. 2020, 2020, 420. [Google Scholar] [CrossRef]
- Bahloul, M.A.; Chahid, A.; Laleg-Kirati, T.M. Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic. IEEE Eng. Med. Biol. Mag. 2020, 1, 249–256. [Google Scholar] [CrossRef]
- Xu, C.H.; Yu, Y.G.; Chen, Y.Q.; Lu, Z.Z. Forecast analysis of the epidemics trend of COVID-19 in the United States by a generalized fractional-order SEIR model. Nonlinear Dyn. 2020, 101, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Z.; Yu, Y.G.; Chen, Y.Q.; Ren, G.J. A fractional-order SEIHDR model for COVID-19 with inter-city networked coupling effects. Nonlinear Dyn. 2020, 101, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. When will the Coronavirus Outbreak Peak? 2020. Available online: http://www.nature.com/articles/d41586-020-00361-5 (accessed on 12 September 2021).
- Tang, B.; Wang, X.; Li, Q. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J. Clin. Med. 2020, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.M.; Rui, J.; Wang, Q.P.; Zhao, Z.Y.; Cui, J.A. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infec. Dis. Poverty 2020, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Zhao, S.; Gao, D.; Lou, Y.; Yang, S.; Musa, S.S. A conceptual model for the Coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 2020, 93, 211–216. [Google Scholar] [CrossRef]
- Ma, W.Y.; Li, C.P.; Wu, Y.J.; Wu, Y.Q. Synchronization of fractional fuzzy cellular neural networks with interactions. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 103106. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.M.; Ma, W.Y.; Ma, N.R. Partial topology identification of tempered fractional-order complex networks via synchronization method. Math. Methods Appl. Sci. 2021, 1–14. [Google Scholar] [CrossRef]
- Yang, W.Y.; Zhang, D.Y.; Peng, L.R. Rational evaluation of various epidemic models based on the COVID-19 data of China. arXiv 2020, arXiv:2003.05666. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Cremonesi, P.; Koren, Y.; Turrin, R. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 39–46. [Google Scholar]
- Singh, P.; Borah, B. An efficient time series forecasting model based on fuzzy time series. Eng. Appl. Artif. Intell. 2013, 26, 2443–2457. [Google Scholar] [CrossRef]
- van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2020, 180, 29–48. [Google Scholar] [CrossRef]
- Renardy, M.; Hult, C.; Evans, S. Global sensitivity analysis of biological multiscale models. Curr. Opin. Biomed. Eng. 2019, 11, 109–116. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, M.A. Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study. Chaos Solitons Fractals 2020, 139, 110075. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Mensah, I.; Akinyemi, L.; Oduro, B. A fractional order approach to modeling and simulations of the novel COVID-19. Adv. Differ. Equ. 2020, 2020, 1–21. [Google Scholar] [CrossRef] [PubMed]
Models | Parameters | PRCC Values | p-Values |
---|---|---|---|
SIR | 0.8866 | 0.0000 | |
−0.4624 | |||
SEIR | 0.8667 | 0.0000 | |
−0.4556 | |||
SEIR-Q | 0.7326 | 0.0000 | |
0.2386 | |||
−0.5570 | |||
−0.2734 | |||
−0.1798 | |||
0.0396 | 0.0763 | ||
SEIR-QD | 0.8823 | 0.0000 | |
−0.4399 | |||
SEIR-AHQ | 0.7213 | ||
−0.5645 | |||
−0.3493 | |||
−0.1348 | |||
−0.0727 | 0.0011 | ||
0.0207 | 0.3542 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, N.; Ma, W.; Li, Z. Multi-Model Selection and Analysis for COVID-19. Fractal Fract. 2021, 5, 120. https://doi.org/10.3390/fractalfract5030120
Ma N, Ma W, Li Z. Multi-Model Selection and Analysis for COVID-19. Fractal and Fractional. 2021; 5(3):120. https://doi.org/10.3390/fractalfract5030120
Chicago/Turabian StyleMa, Nuri, Weiyuan Ma, and Zhiming Li. 2021. "Multi-Model Selection and Analysis for COVID-19" Fractal and Fractional 5, no. 3: 120. https://doi.org/10.3390/fractalfract5030120
APA StyleMa, N., Ma, W., & Li, Z. (2021). Multi-Model Selection and Analysis for COVID-19. Fractal and Fractional, 5(3), 120. https://doi.org/10.3390/fractalfract5030120