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Abstract: In the face of an increasing number of COVID-19 infections, one of the most crucial
and challenging problems is to pick out the most reasonable and reliable models. Based on the
COVID-19 data of four typical cities/provinces in China, integer-order and fractional SIR, SEIR,
SEIR-Q, SEIR-QD, and SEIR-AHQ models are systematically analyzed by the AICc, BIC, RMSE,
and R means. Through extensive simulation and comprehensive comparison, we show that the
fractional models perform much better than the corresponding integer-order models in representing
the epidemiological information contained in the real data. It is further revealed that the inflection
point plays a vital role in the prediction. Moreover, the basic reproduction numbers R0 of all models
are highly dependent on the contact rate.

Keywords: fractional order; COVID-19; multi-model selection; model evaluation

1. Introduction

Since December 2019, a virus named COVID-19 was first confirmed in Wuhan, China
and has quickly spread throughout the world. As of 25 June 2021, the WHO reported
about 179 million confirmed cases, including more than 3.8 million deaths [1]. In order to
control the outbreak, it is crucial to predict the spreading trend, analyze the key epidemi-
ological parameters, and simulate the results of various control measures. All actions of
individuals and governments depend heavily on predictions of how many people will
be infected. Therefore, many models have been reported to accurately estimate and pre-
dict the epidemic trend, such as empirical functions, statistical methods, dynamical and
stochastic models [2–4]. Among them, integer-order and fractional dynamical models can
better describe the dynamic behavior of disease transmission, which has attracted attention
widely [5–7].

According to the importance of mathematical modelling, integer-order infectious
disease models have been widely studied for its simplicity and accessibility. Based on
the compartment hypothesis of the population, most models include compartments of
susceptible (S), exposed (E), infected (I), recovered (R), death (D), quarantined (Q), asymp-
tomatic (A), insusceptible (P), and hospitalized (H) individuals, such as SIR [8], SEIR [9],
SEIR-Q [10], SEIR-QD [11], and SEIR-AHQ [12] models. In addition, many sophisticated
models also have been proposed [13–16].

In the integer-order models, it is usually assumed that the infection rate, conversion
rate, and removal rate are constants, which lead to the system states that are independent
of history and have no memory. However, it is well known that the evolution, spread, and
control of infectious diseases are closely related to the historical states, so the diseases are
non-Markov processes. The more distant experience and knowledge have less influence on
the present states. Thus, the growth rate of the state is not exponential, but it is more like an
inverse power-law function, which can be accurately described by a fractional model. The
fractional model is a generalization of the classical integer-order model. On the other hand,
fractional calculus proved to be more effective in modeling dynamics with long memory
and hereditary properties. The memory property of disease is embodied in integrating
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more information from the past. In addition, the hereditary property reflects in the genetic
profile along with evolution of the disease. All these lead to the fractional model having
more advantages in modeling some biological systems than the classical integer-order.
Therefore, many fractional-order models are applied to characterize memory-dependent
phenomena for COVID-19, such as fractional SEIRD [17], fractional SEIQR [18], fractional
SEIQRDP [19,20], fractional SEIHDR [21], and so on.

The main purposes of modeling for COVID-19 are analysis transmission trends and
biological characteristics. Many dynamical models, including integer-order and fractional
types, have been proposed to predict the epidemic trend. However, different models
have given vastly different results of Wuhan [22–25]: the values of the basic reproduction
number from 1.5 to 6, the peak times from mid-February to late March, and the total
number of infections ranges from 20,000 to millions. Knowing which model is more reliable
is a pending issue.

In the face of so many integer-order and fractional dynamical models, which one
would be our best choice to estimate the epidemic trend and epidemiological features for
COVID-19? In this paper, this pivotal problem is systematically explored by comparing
the forecast ability of five models based on the four classic model selection methods. We
consider integer-order and fractional SIR, SEIR, SEIR-Q, SEIR-QD, and SEIR-AHQ models
for selection and analysis. Through extensive simulation and comprehensive comparison,
we obtain many meaningful results, which really deepen our understanding of disease.

The remainder of the paper is arranged as follows: Section 2 introduces the integer-
order and fractional models. In Section 3, four means are given for multi-model selection
and analysis. Section 4 carries out comparisons and evaluations. Finally, some concluding
remarks are given in Section 5.

2. Integer-Order and Fractional Models

We collect and study some typical integer-order models such as SIR, SEIR, SEIR-
Q, SEIR-QD, and SEIR-AHQ models to find out which is the best model for COVID-19.
Fractional models are constructed from the corresponding integer-order models. In these
models, S represents the susceptible population, I represents the infectious population,
E represents the individuals who are infected but in the latent period, P represents the
isolated susceptible population, Q represents the individuals who are confirmed and
infected, R denotes recovered cases, D denotes death cases, A denotes asymptomatic cases,
and H denotes hospitalized cases. In the SIR and SEIR models, the parameters α, γ−1,
and β denote the infection rate, the average latent time and the cure rate, separately. In
the SEIR-Q model, the parameters α1, α2, ε, γ, κ, δ, λ, and η denote the asymptomatic
transmission rate, the symptomatic transmission rate, the onset rate, the recovery rate of
infected, the testing rate, the sensitivity of test, the specificity of test, and the recovery
rate of the quarantined population, respectively. In the SEIR-QD model, the parameters
δ, α, γ−1, β−1, λ, and κ denote the protection rate, the infection rate, the average latent
time, the average quarantine time, the cure rate, and the mortality rate, separately. In the
SEIR-AHQ model, the parameters α, ε, θ, σ, µ, δ1, δ2, λ, e, ω, β1, β2, and β3 denote
the transmission rate of contact, the quarantined rate, the transmissibility ratio between
asymptomatic and symptomatic, the transition rate of exposed, the probability of having
symptoms among infected, the transition rate of symptomatic infected, the transition
rate of quarantined exposed, the rate at which the quarantined uninfected contacts are
released into the wider community, the contact rate, the disease-induced death rate, the
recovery rate of asymptomatic, the recovery rate of the symptomatic and the recovery rate
of quarantined, respectively.

Fractional calculus is a strong tool to characterize the memory effects of the disease.
The Caputo fractional derivative contains a power-law function in the convolution kernel,
which can reflect the fact that the contribution of the earlier state is significantly smaller than
the current state. Based on the integer-order models and the Caputo fractional derivative
method [26,27], the fractional models are given as follows:
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(1) Fractional SIR model

CDq
0,tS(t) = −αS(t)I(t)/N,

CDq
0,t I(t) = αS(t)I(t)/N − βI(t),

CDq
0,tR(t) = βI(t).

(2) Fractional SEIR model

CDq
0,tS(t) = −αS(t)I(t)/N,

CDq
0,tE(t) = αS(t)I(t)/N − γE(t),

CDq
0,t I(t) = γE(t)− βI(t),

CDq
0,tR(t) = βI(t).

(3) Fractional SEIR-Q model

CDq
0,tS(t) = −(α1E(t) + α2 I(t))S(t)/N − κ(1− λ)S(t),

CDq
0,tE(t) = (α1E(t) + α2 I(t))S(t)/N − (ε + κδ)E(t),

CDq
0,tQ(t) = κ(1− λ)S(t) + κδ(E(t) + I(t))− ηQ(t),

CDq
0,t I(t) = εE(t)− (γ + κδ)I(t),

CDq
0,tR(t) = γI(t) + ηQ(t).

(4) Fractional SEIR-QD model

CDq
0,tS(t) = −αS(t)I(t)/N − δS(t),

CDq
0,tE(t) = αS(t)I(t)/N − γE(t),

CDq
0,t I(t) = γE(t)− βI(t),

CDq
0,tQ(t) = βI(t)− λQ(t)− κQ(t),

CDq
0,tR(t) = λQ(t),

CDq
0,tD(t) = κQ(t),

CDq
0,tP(t) = δS(t).

(5) Fractional SEIR-AHQ model

CDq
0,tS(t) = −(αe + eε(1− α))S(t)(I(t) + θA(t))/N + λP(t),

CDq
0,tE(t) = αe(1− ε)S(t)(I(t) + θA(t))/N − σE(t),

CDq
0,tP(t) = eε(1− α)(I(t) + θA(t))− λP(t),

CDq
0,tH(t) = δ1 I(t) + δ2Q(t)− (ω + β3)H(t),

CDq
0,tQ(t) = eεα(I(t) + θA(t))− δ2Q(t),

CDq
0,t I(t) = σµE(t)− (ω + γ1 + δ1)I(t),

CDq
0,tR(t) = β1 I(t) + β2 A(t) + β3H(t),

CDq
0,t A(t) = σ(1− µ)E(t)− β1 I(t).

The CDq
0,t is the Caputo fractional derivative, which is defined as:

CDq
0,tx(t) =

1
Γ(n− q)

t∫
0

(t− τ)n−q−1x(n)(τ)dτ,

where n− 1 < q ≤ n ∈ Z+.
The transfer diagrams for five models are given in Figure 1. When q = 1, the Caputo

fractional derivative reduces to the classic integer-order derivative, so the fractional SIR, SEIR,
SEIR-Q, SEIR-QD, and SEIR-AHQ models become corresponding integer-order models.
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Figure 1. The transfer diagrams of five models. (a) SIR; (b) SEIR; (c) SELR-Q; (d) SEIR-QD; and
(e) SEIR-AHQ.

3. Four Means for Model Evaluation and Analysis

In order to be closer to the disease transmission, more parameters are added, which
makes the model structure more complicated. This can easily lead to the models overfitting
the real data. It is not trivial to rationally evaluate various dynamical models. Furthermore,
many different aspects should be considered at the same time [28], such as complexity
and accuracy, fitting and prediction, robustness and sensitivity, and so on. Overempha-
sizing one aspect and neglecting another, consciously or unconsciously, would lead to
unsatisfactory forecasts. We further introduce four means for model selection to solve this
problem reasonably.

3.1. The Corrected Akaike Information Criterion (AICc)

The AIC was first proposed by Japanese statistician Akaike and is now a measuring
standard of the degree of fitting for models. Based on the concept of entropy, the AIC
can balance the model complexity and accuracy of the data fitted by the model. When
K > 40/N, that is too many estimated parameters (K) compare to the size of the data points
(N), the following corrected AIC [29] can be used:

AICc = Nlog(L) + 2K
N

N − K− 1
,

where N is the sample size, K is the number of parameters, and L is the likelihood function.
The AICc is derived under Gaussian assumptions which are weakly dependent, so the use
of AICc is highly recommended in practice.

3.2. The Bayesian Information Criterion (BIC)

The BIC was first introduced by Schwarz (1978) as a competitor to AIC. The BIC is an
asymptotic approximation to a transformation of the Bayesian posterior probability of the
model [30], which is defined as:

BIC = Nln(L) + kln(N).

The smaller value of BIC means better fitting accuracy between model and data.
Compared with AIC, the BIC punishes the model parameter number more in the case of
large data; therefore, the BIC prefers to choose simple models with fewer parameters.
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3.3. The Root Mean Square Error (RMSE)

The RMSE is used to calculate how much the forecasted value differs from the actual
value [31]. The smaller value shows the higher prediction accuracy; therefore, the root
mean square error is used as an evaluation standard of measurement precision. The RMSE
is defined as:

RMSE =

√
∑N

i=1(Ai − Fi)
2

N
,

where N is the size of data points, and Ai and Fi represent the actual value and forecasted
value, separately. The RMSE can be applied to estimate the accuracy of models.

3.4. The Pearson’s Correlation Coefficient (R)

In order to accurately describe the degree of correlation between the forecasted value
and the actual value [31], the Pearson’s correlation coefficient (R) is defined as:

R =
N ∑N

i=1 AiFi − (∑N
i=1 Ai)(∑N

i=1 Fi)√
N(∑N

i=1 A2
i )− (∑N

i=1 Ai)
2
√

N(∑N
i=1 F2

i )− (∑N
i=1 Fi)

2
.

The value of R satisfies −1 < R < 1. The + and − show positive and negative linear
correlations between the forecasted and actual values, respectively. The R greater than
or equal to 0.8 is considered as strong correlation. R2 demonstrates the strength of the
association between Ai and Fi.

4. Model Evaluation and Analysis Based on the Real Data

To make a quantitative comparison of different models, the outbreak of COVID-19 is
studied, which has seriously affected economy and health of people around the world. In
this section, we apply four means to evaluate and analyze the most widely used models
in the field of epidemiology. Since the data link of COVID-19 in China is intact, we
use the data from the China National Health Commission (http://www.chinacdc.cn/,
accessed on 12 September 2021) for simulation. The fifty-four-day data from 22 January
2020 to 15 March 2020 of Beijing, Chongqin, Tianjing, and Heilongjiang are used, which are
considered as some successful cities during the battle against the disease in China. The
unknown parameters involved in integer-order and fractional models are identified by the
non-linear least squares method and Simulink Design Optimization of MATLAB. Through
a large number of numerical tests, the following conclusions can be drawn.

4.1. The Fractional Models Can Better Fit the Real Data than the Corresponding
Integer-Order Models

It is well known that the outbreak of COVID-19 is not only dependent on the number
of current infected people, but also relates to those who were infected in the past; that is, the
disease has memory. The fractional epidemic model can reflect the memory and heredity
properties, which is more compatible with the spread process of disease. The four means
are computed to evaluate and analyze the validity of integer-order and fractional models.

The smaller AICc, BIC, RMSE values and the larger R value of model indicate the
better fitting accuracy, respectively. The difference of four means between integer-order
and fractional models are given as:

Dj = INTj − FRAj,

where j is the AICc, BIC, RMSE, or R, and INTj and FRAj are the values of the mean
j on the integer-order model and the fractional model, respectively. When DAICc > 0,
DBIC > 0, DRMSE > 0, and DR < 0, the fractional model has better fitting accuracy than the
corresponding integer-order model, respectively.

http://www.chinacdc.cn/
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In Figure 2, the Dj are calculated from 22 January 2020 to different end times in Beijing,
Chongqing, Tianjin, and Heilongjiang. It is found that all of the Dj about AICc, BIC, and
RMSE are greater than 0, and the DR values are less than 0; that is, the fractional models
are better than the corresponding integer-order models for different time windows.

For convenience, all of our subsequent discussions are based on the fractional models.

4.2. No Model Is Reliable for Long-Term Forecasting Based on the Early-Stage Real Data

The rapid spreading of COVID-19 results in a dramatic increase in the number of
infections. Therefore, how to predict its spread trend is a tough task. Five fractional models
are used to estimate long-term prediction ability. In Figure 3, the predication and fitting
results of three cities (Beijing, Chongqing, Tianjin) and Heilongjiang province are given
by AICc, BIC, RMSE, and R means. In the early stage of the epidemic with very limited
data, all models can fit and predict spread trend in a short-term very well, but no model is
reliable for long-term forecasting. All models always underestimate or overestimate the
size of the epidemic for long-term prediction.

4.3. The Fractional SEIR-Q and SEIR-QD Models Can More Accurately Describe the COVID-19
Spread Trends

Fractional dynamical models are more in line with the biological significance by
specific parameters (fractional order). The fractional dynamical models can be divided
into three groups based on their performance. In Figure 4, the fractional SIR and SEIR
models look insufficient to describe the spread trends, especially in the final stage, since
too few parameters are involved. The fractional SEIR-AHQ model contains redundant
parameters, which generates the larger value of AICc. That leads to its fluctuation being the
greatest among the models. The fractional SEIR-Q and SEIR-QD systems are more suitable
to characterize the infectious characteristics of COVID-19 by appropriately introducing the
effect of quarantine.

4.4. The Inflection Point of the Real Data Is Vital for Prediction

The inflection point plays a pivotal role in predicting the epidemic trend, which is in
agreement with previous report [28]. In Figure 3, when enough data are available, typically
when the number of infected people passes the inflection point, forecast values converge to
the true values by fractional models. For example, all models fail to make a convincing
forecast in Beijing when using the data before 14 February (early stage and middle stage),
which is also the inflection point. However, after the inflection point (late stage), fractional
SEIR-Q, SEIR-QD, and SEIR-AHQ models can successfully capture the real data.

4.5. A Single Mean Is Insufficient to Evaluate the Model’s Prediction Capability

When using the models to fit data from the epidemic process, four means are used
to select suitable models. The AICc and the BIC consider the trade-off between the fitting
effect of model and the principle of least parameters, but the AICc is more sensitive to the
parameters. The RMSE measures the degree of deviation between the real data and the
fitted data, and the R highlights the correlation between the outcomes of model and the
real data. It should be note that a single evaluation criterion is not reliable. For example,
in Figure 4a, when the end times are from 4 February to 8 February, the most suitable
model is the fractional SIR, but the fractional SEIR-QD model achieves the better trade-
off in the rest time period. In Figure 4b, the fractional SEIR-QD model can be picked
out by BIC. In Figure 4c, the fractional SEIR-AHQ model is the best model by RMSE. In
Figure 4d, the fractional SEIR-Q, SEIR-QD, and SEIR-AHQ models are considered as strong
correlations between the forecasted data and the actual data by R. Therefore, the models
cannot be evaluated by a single mean; namely, the means should be combined to select
suitable models.
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Figure 3. Prediction of the COVID-19 epidemic trends in Beijing city, Chongqing city, Tianjin city, and Heilongjiang province
from 22 January 2020 to 5 March 2020 based on the data of first 10 (early stage), 20 (middle stage), and 30 (late stage) days,
respectively. (a–c) The number of infected people in Beijing at different stages; (d–f) The number of infected people in
Chongqing at different stages; (g–i) The number of infected people in Tianjin at different stages; (j–l) The number of infected
people in Heilongjiang at different stages.
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4.6. All of the Basic Reproduction Number R0 Heavily Depend on Contact Rate

The sensitivity analysis for the fractional epidemic models is to study the main inter-
vention measures that affect the COVID-19 dynamics. Using the next-generation matrix
method [32], the basic reproduction number of fractional SIR, SEIR, SEIR-Q, SEIR-QD,
and SEIR-AHQ models are given as α

β , α
β , α1(γ+κδ)+α2ε

(ε+κδ)(γ+κδ)
, α

β and β1αµ(1−ε)+α(β2+δ1)(1−ε)(1−µ)
β1(β2+δ1)

,
respectively. Latin hypercube sampling (LHS) and partial rank correlation coefficient
(PRCC) [33] are used to analyze the influence of the parameters on the model. The higher
the PRCC value of a parameter, the greater its impact on the dynamic behavior [34]. The
involved parameters are given in Table 1, which includes PRCC and p-values. The bar
graph of PRCC results is shown in Figure 5. Furthermore, whatever the model, R0 are
heavily dependent on the contact rate α, except for α1 and α2 in the SEIR-Q model. It is
obvious that non-medical intervention measures (social distance restriction, self-isolation,
staying at home or wearing masks, etc.) have directly impacted on epidemic prevention
and control.

Based on the references [6,20,21,35], we could easily obtain unique solutions and a
locally asymptotically stable of equilibrium points. We only take fractional SEIR-QD as an
example; other models can get similar results.

Remark 4.1. The initial value problem for the fractional SEIR-QD model has a unique solution
in R7

+.

Remark 4.2. The diseases-free equilibrium (0, 0, 0, 0, R∗, D∗, P∗) of the fractional SEIR-QD
system is locally asymptotically stable if R0 < 1 and unstable if R0> 1.
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Table 1. The PRRC values of R0 with corresponding P-values.

Models Parameters PRCC Values p-Values

SIR
α 0.8866 0.0000
β −0.4624 1.5497× 10−106

SEIR
α 0.8667 0.0000
β −0.4556 4.3039× 10−103

SEIR-Q

α1 0.7326 0.0000
α2 0.2386 2.7566× 10−27

ε −0.5570 2.1135× 10−163

κ −0.2734 1.3051× 10−35

δ −0.1798 5.4878× 10−16

γ 0.0396 0.0763

SEIR-QD
α 0.8823 0.0000
β −0.4399 1.9184× 10−95

SEIR-AHQ

α 0.7213 5.2370× 10−321

µ −0.5645 1.0293× 10−168

ε −0.3493 1.7440× 10−58

δ1 −0.1348 1.4459× 10−9

β1 −0.0727 0.0011
β2 0.0207 0.3542
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5. Conclusions

In this paper, we systematically studied the prediction capability of five widely used
integer-order and fractional-order models with the COVID-19 data in China. Through
numerical simulations, many insightful results are obtained by the four means and the
PRCC. Firstly, the fractional models have better performance than the corresponding
integer-order models. Fractional models can better describe epidemic characteristics in the
diseases by an additional parameter (fractional order). Secondly, almost all of the models
overestimate or underestimate the infected people of outbreak based on the early-stage
data. Thirdly, the fractional SEIR-Q and SEIR-QD models can better predict the scales
of epidemic trends, which have the better trade-off between the model complexity and
the fitting accuracy. Fourthly, it is found that the inflection points in the data play a very
important role. The prediction results of all integer-order and fractional models are closely
relate to inflection points. Fifthly, a single evaluation criterion is insufficient to estimate
the model’s capability. The best model for modeling COVID-19 can be picked out by AICc
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and BIC means. Finally, based on the LHS and PRCC methods, we find that non-medical
intervention measures play a critical role in COVID-19 control.

This paper provides a new insight about selection and analysis of infectious diseases
by fractional modeling. Furthermore, models with vaccine can play an important role in
the allocation of vaccines, which are not considered in this paper. We will discuss this in
our future work.
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