On q-Uniformly Mocanu Functions
Abstract
:1. Introduction
2. Preliminary Results
3. Main Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2018, 193, 229–243. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; A Wiley-Interscience Publication: New York, NY, USA, 1993. [Google Scholar]
- Dos Santos, M. Non-Gaussian distributions to random walk in the context of memory kernels. Fract. Fract. 2018, 3, 20. [Google Scholar] [CrossRef]
- Ademogullari, K.; Kahramaner, Y. q-Harmonic mappings for which analytic part is q-convex function. Nonlinear Anal. Differ. Equations 2016, 4, 283–293. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. arXiv, 2014; arXiv:1404.3988. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogous of Dziok-Srivastava operator. Math. Anal. 2013, 2013, 1–6. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Da Costa, B.G.; Borges, E.P. A position-dependent mass harmonic oscillater and defomred spaces. J. Math. Phys. 2018, 4, 042101. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Isamail, M.E.H.; Merks, E.; Styer, D. A generalization of starlike functions, Complex Variables. Complex Var. Theory Appl. Int. J. 2007, 14, 77–84. [Google Scholar]
- Jackson, F.H. On q-functions and certain difference operator. Transactions 2012, 46, 253–281. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Noor, K.I. On generalized q-close-to-convexity. Appl. Math. Inf. Sci. 2017, 11, 1383–1388. [Google Scholar] [CrossRef]
- Noor, K.I. On generalized q-Bazilevic functions. J. Adv. Math. Stud. 2017, 10, 418–424. [Google Scholar]
- Noor, K.I.; Riaz, S. Generalized q-starlike functions. Stud. Scient. Math. Hungarica 2017, 54, 1–14. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some generalizations and basic (q-) extensions of Bernouli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Polatoglu, Y.; Ucar, H.; Yilmaz, B. q-starlike functions of order alpha. TWMS J. Appl. Eng. Math. 2018, 8, 186–192. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity II. Folia Sci. Univ. Tech. Resov. 1998, 22, 65–78. [Google Scholar]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. Uniformly convex functions II. Ann. Polon. Math. 1993, 3, 275–285. [Google Scholar] [CrossRef]
- Sokol, J.; Nunokawa, M. On some classes of convex functions. C.R. Math. 2015, 353, 427–431. [Google Scholar] [CrossRef]
- Mocanu, P.T. Une proprie´te´ de convexite gene´ralise´e´ dans la theorie de la repre´se´ntation conform. Mathmatica 1969, 11, 127–133. [Google Scholar]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Amer. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Miller, S.S. Differential inequalities and Caratheodory functions. Bull. Amer. Math. Soc. 1975, 81, 79–81. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some classes of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badar, R.S.; Noor, K.I. On q-Uniformly Mocanu Functions. Fractal Fract. 2019, 3, 5. https://doi.org/10.3390/fractalfract3010005
Badar RS, Noor KI. On q-Uniformly Mocanu Functions. Fractal and Fractional. 2019; 3(1):5. https://doi.org/10.3390/fractalfract3010005
Chicago/Turabian StyleBadar, Rizwan S., and Khalida Inayat Noor. 2019. "On q-Uniformly Mocanu Functions" Fractal and Fractional 3, no. 1: 5. https://doi.org/10.3390/fractalfract3010005
APA StyleBadar, R. S., & Noor, K. I. (2019). On q-Uniformly Mocanu Functions. Fractal and Fractional, 3(1), 5. https://doi.org/10.3390/fractalfract3010005