Boundary Value Problems for Nonlinear Fractional Differential Equations: Theory, Methods, and Applications
1. Introduction
2. An Overview of the Published Articles
- Contribution 1.
- Contribution 2.
- Contribution 3.
- Contribution 4.
- Contribution 5.
- Contribution 6.
- Contribution 7.
- Contribution 8.
- Contribution 9.
- Contribution 10.
- Contribution 11.
- Contribution 12.
3. Conclusions
Conflicts of Interest
List of Contributions
- Al-Issa, S.M.; El-Sayed, A.M.A.; Hashem, H.H.G. An outlook on hybrid fractional modeling of a heat controller with multi-valued feedback control. Fractal Fract. 2023, 7, 759. https://doi.org/10.3390/fractalfract7100759.
- Merad, M.; Meftah, B.; Boulares, H.; Moumen, A.; Bouye, M. Fractional simpson-like inequalities with parameter for differential s--convex functions. Fractal Fract. 2023, 7, 772. https://doi.org/10.3390/fractalfract7110772.
- Ali Khan, H.N.; Zada, A.; Popa, I.-L.; Ben Moussa, S. The impulsive coupled langevin -caputo fractional problem with slit-strip-generalized-type boundary conditions. Fractal Fract. 2023, 7, 837. https://doi.org/10.3390/fractalfract7120837.
- Zhao, K.; Liu, J.; Lv, X. A unified approach to solvability and stability of multipoint bvps for langevin and sturm–liouville equations with ch–fractional derivatives and impulses via coincidence theory. Fractal Fract. 2024, 8, 111. https://doi.org/10.3390/fractalfract8020111.
- Aladsani, F.; Ibrahim, A.G. Existence and stability of solutions for p-proportional -weighted -hilfer fractional differential inclusions in the presence of non-instantaneous impulses in banach spaces. Fractal Fract. 2024, 8, 475. https://doi.org/10.3390/fractalfract8080475.
- Mesloub, S.; Alhazzani, E.; Gadain, H.E. On one point singular nonlinear initial boundary value problem for a fractional integro-differential equation via fixed point theory. Fractal Fract. 2024, 8, 526. https://doi.org/10.3390/fractalfract8090526.
- Middlebrook, C.; Feng, W. Integral operators in b-metric and generalized b-metric spaces and boundary value problems. Fractal Fract. 2024, 8, 674. https://doi.org/10.3390/fractalfract8110674.
- Din, M.; Ishtiaq, U.; Alnowibet, K.A.; Lazăr, T.A.; Lazăr, V.L.; Guran, L. Certain novel fixed-point theorems applied to fractional differential equations. Fractal Fract. 2024, 8, 701. https://doi.org/10.3390/fractalfract8120701.
- Cichoń, M.; Salem, H.A.H.; Shammakh, W. Regularity results for hybrid proportional operators on Hölder spaces. Fractal Fract. 2025, 9, 58. https://doi.org/10.3390/fractalfract9020058.
- Madani, Y.A.; Almalahi, M.A.; Osman, O.; Muflh, B.; Aldwoah, K.; Mohamed, K.S.; Eljaneid, N. Analysis of an acute diarrhea piecewise modified ABC fractional model: Optimal control, stability and simulation-applications in modeling health systems. Fractal Fract. 2025, 9, 68. https://doi.org/10.3390/fractalfract9020068.
- Gassem, F.; Ali, A.; Aldwoah, K.; Egami, R.H.; Osman, O.; Younis, B.; Touati, A. Qualitative analysis of a three-dimensional dynamical system of fractal-fractional-order evolution differential equations with terminal boundary conditions. Fractal Fract. 2025, 9, 259. https://doi.org/10.3390/fractalfract9040259.
- Gao, F.; Chi, C. Neural network method for solving time fractional diffusion equations. Fractal Fract. 2025, 9, 338. https://doi.org/10.3390/fractalfract9060338.
References
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analysis of a hybrid integro-differential inclusion. Bound. Value Probl. 2022, 2022, 68. [Google Scholar] [CrossRef]
- Ikram, M.D.; Asjad, M.I.; Akgül, A.; Baleanu, D. Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates. Alex. Eng. J. 2021, 60, 3593–3604. [Google Scholar] [CrossRef]
- Farman, M.; Cicik, A. A constant proportional Caputo operator for modeling childhood disease epidemics. Decis. Anal. J. 2004, 10, 100393. [Google Scholar] [CrossRef]
- Ma, C.H.; Shiri, B.; Wu, G.; Baleanu, D. New fractional signal smoothing equations with short memory and variable order. Optik 2020, 218, 164507. [Google Scholar] [CrossRef]
- Hammou, B.S.; Djerad, A.; Memou, A.; Latrous, C. A boundary value problem with an integral condition for a certain fractional differential equation. Math. Model. Anal. 2025, 30, 405–420. [Google Scholar] [CrossRef]
- Kattan, D.A.; Hammad, H.A. Solving fractional integro-differential equations with delay and relaxation impulsive terms by fixed point techniques. Bound. Value Probl. 2024, 2024, 146. [Google Scholar] [CrossRef]
- Poovarasan, R.; Samei, M.E.; Govindaraj, V. Analysis of nonlinear integro-differential equations with four-point nonlocal BVP using Ψ-Caputo fractional derivative. Bound. Value Probl. 2025, 2025, 130. [Google Scholar]
- Kechar, C.; Hamoud, A.A.; Ardjouni, A.; Emadifar, H.; Ahmed, K.K. Solution of fractional integro-differential equations with some existence and stability results. Bound. Value Probl. 2025. [Google Scholar] [CrossRef]
- Hamarashid, H.A.; Hama, M.F.; Sabir, P.O.; El-Deeb, S.M.; Catas, A. Solutions of nonlinear integro-differential equations of fractional order with fractional boundary conditions. J. Inequal Appl. 2025, 2025, 88. [Google Scholar]
- Shams, M.; Alalyani, A. High performance adaptive step size fractional numerical scheme for solving fractional differential equations. Sci. Rep. 2025, 15, 13006. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Chi, C. Solving FDE by trigonometric neural network and its applications in simulating fractional HIV model and fractional Schrodinger equation. Math. Methods Appl. Sci. 2025, 46, 3132–3142. [Google Scholar] [CrossRef]
- Shiri, B.; Kong, H.; Wu, G.C.; Luo, C. Adaptive Learning Neural Network Method for Solving Time–Fractional Diffusion Equations. Neural Comput. 2022, 4, 971–990. [Google Scholar] [CrossRef] [PubMed]
- Benchohra, M.; Karapınar, E.; Lazreg, J.E.; Salim, A. Fractional differential equations with instantaneous impulses. In Advanced Topics in Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2023; pp. 77–111. [Google Scholar]
- Dhage, B.C. Nonlinear functional boundary value problems in Banach algebras involving Carathéodories. Kyungpook Math. J. 2006, 46, 427–441. [Google Scholar]
- Mahmoudi, L.; Meftah, B. Parameterized simpson-like inequalities for differential s-convex functions. Analysis 2023, 43, 59–70. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Noor, K.I.; Khan, A.G. Some new classes of convex functions and inequalities. Miskolc Math. Notes 2018, 19, 77–94. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Trujillo, J.J. Differential equations of fractional order, methods, results and problem. Appl. Anal. 2013, 78, 153–192. [Google Scholar] [CrossRef]
- Lundqvist, M. Silicon Strip Detectors for Scanned Multi-Slit u-Ray Imaging; Kungl Tekniska Hogskolan: Stockholm, Sweden, 2003. [Google Scholar]
- Mellow, T.; Karkkainen, L. On the sound fields of infinitely long strips. J. Acoust. Soc. Am. 2011, 130, 153–167. [Google Scholar] [CrossRef]
- Feng, W.; Webb, J.R.L. Solvability of three point boundary value problems at resonance. Nonlinear Anal. Theory Methods Appl. 1997, 30, 3227–3238. [Google Scholar] [CrossRef]
- Feltrin, G.; Sampedro, J.C.; Zanolin, F. Periodic solutions to superlinear indefinite planar systems: A topological degree approach. J. Differ. Equ. 2023, 363, 546–581. [Google Scholar]
- Zhao, K.H. Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping. Adv. Cont. Discr. Mod. 2024, 2024, 5. [Google Scholar] [CrossRef]
- Alsheekhhussain, Z.; Ibrahim, A.G.; Al-Sawalha, M.M.; Jawarneh, Y. The existence of solutions for ω-weighted Ψ-Hilfer fractional differential inclusions of order λ∈(1, 2), with non-instantaneous impulses in Banach spaces. Fractal Fract. 2024, 8, 144. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Rashid, S.; Hammouch, Z. More properties of the proportional fractional integrals and derivatives of a function with respect to another function. Adv. Differ. Equ. 2020, 2020, 303. [Google Scholar] [CrossRef]
- Shi, P.; Shillor, M. A quasistatic contact problemin thermoelasticity with radiation condition for the temperature. J. Math. Anal. Appl. 1993, 172, 147–165. [Google Scholar] [CrossRef][Green Version]
- Navascués, M.A.; Mohapatra, R.N. Fixed point dynamics in a new type of contraction in b-metric spaces. Symmetry 2024, 16, 506. [Google Scholar] [CrossRef]
- Fernandez, J.; Malviya, N.; Savić, A.; Paunović, M.; Mitrović, Z.D. The extended cone b-metric-like spaces over Banach algebra and some applications. Mathematics 2022, 10, 149. [Google Scholar] [CrossRef]
- Petrov, E. Fixed point theorem for mappings contracting perimeters of triangles. J. Fixed Point Theory Appl. 2023, 25, 74. [Google Scholar] [CrossRef]
- Petrov, E.; Bisht, R.K. Fixed point theorem for generalized Kannan type mappings. In Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–18. [Google Scholar]
- Berinde, V.; Păcurar, M. Fixed point theorems for Kannan type mappings with applications to split feasibility and variational inequality problems. arXiv 2019, arXiv:1909.02379. [Google Scholar] [CrossRef]
- Salem, H.A.H.; Cichoń, M.; Shammakh, W. Existence results for tempered-Hilfer fractional differential problems on Hölder spaces. Symmetry 2024, 16, 700. [Google Scholar] [CrossRef]
- Appell, J.; Dutkiewicz, A.; López, B.; Reinwand, S.; Sadarangani, K. Hölder-type spaces, singular operators, and fixed point theorems. Fixed Point Theory 2021, 22, 31–58. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763. [Google Scholar] [CrossRef]
- Al-Refai, M.; Baleanu, D. On an extension of the operator with Mittag-Leffler kernel. Fractals 2022, 30, 2240129. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. New concept in calculus: Piecewise differential and integral operators. Chaos Solitons Fractals 2021, 145, 110638. [Google Scholar] [CrossRef]
- Assanova, A.T.; Uteshova, R.E. A singular boundary value problem for evolution equations of hyperbolic type. Chaos Solitons Fractals 2021, 143, 110517. [Google Scholar] [CrossRef]
- Racke, R. Lectures on Nonlinear Evolution Equations: Initial Value Problems; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar]
- Heath, M.T. Scientific Computing: An Introductory Survey, 2nd ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Shiri, B.; Baleanu, D. All linear fractional derivatives with power functions’convolution kernel and interpolation properties. Chaos Solitons Fractals 2023, 170, 113399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Feng, W. Boundary Value Problems for Nonlinear Fractional Differential Equations: Theory, Methods, and Applications. Fractal Fract. 2026, 10, 63. https://doi.org/10.3390/fractalfract10010063
Feng W. Boundary Value Problems for Nonlinear Fractional Differential Equations: Theory, Methods, and Applications. Fractal and Fractional. 2026; 10(1):63. https://doi.org/10.3390/fractalfract10010063
Chicago/Turabian StyleFeng, Wenying. 2026. "Boundary Value Problems for Nonlinear Fractional Differential Equations: Theory, Methods, and Applications" Fractal and Fractional 10, no. 1: 63. https://doi.org/10.3390/fractalfract10010063
APA StyleFeng, W. (2026). Boundary Value Problems for Nonlinear Fractional Differential Equations: Theory, Methods, and Applications. Fractal and Fractional, 10(1), 63. https://doi.org/10.3390/fractalfract10010063