A Finite Difference Method for Caputo Generalized Time Fractional Diffusion Equations
Abstract
1. Introduction
2. The Numerical Solution Scheme and Its Theoretical Results
3. The Proofs for the Theoretical Results
4. Numerical Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulish, V.; Jose, L. Application of Fractional Calculus to Fluid Mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Stefański, T.; Gulgowski, J. Signal propagation in electromagnetic media described by fractional-order models. Commun. Nonlinear Sci. Numer. Simul. 2019, 82, 105029. [Google Scholar] [CrossRef]
- Cai, X.; Liu, F. Numerical simulation of the fractional-order control system. J. Appl. Math. Comput. 2007, 23, 229–241. [Google Scholar] [CrossRef]
- Metzler, R.; Nonnenmacher, T. Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int. J. Plast. 2003, 19, 941–959. [Google Scholar] [CrossRef]
- Martynyuk, V.; Ortigueira, M. Fractional model of an electrochemical capacitor. Signal Process. 2015, 107, 355–360. [Google Scholar] [CrossRef]
- Jiang, X.; Qi, H. Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A Math. Theor. 2012, 45, 485101. [Google Scholar] [CrossRef]
- Bosch, J.; Stoll, M. A Fractional Inpainting Model Based on the Vector-Valued Cahn–Hilliard Equation. SIAM J. Imaging Sci. 2015, 8, 2352–2382. [Google Scholar] [CrossRef]
- Benson, D.; Wheatcraft, S.; Meerscheart, M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36, 1403–1412. [Google Scholar] [CrossRef]
- Dagan, G. Theory of Solute Transport by Groundwater. Annu. Rev. Fluid Mech. 1987, 19, 183–215. [Google Scholar] [CrossRef]
- Bouchaud, J.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127–293. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Zeng, S.; Baleanu, D.; Bai, Y.; Wu, G. Fractional differential equations of Caputo-Katugampola type and numerical solutions. Appl. Math. Comput. 2017, 315, 549–554. [Google Scholar] [CrossRef]
- Singh, J.; Alshehri, A.M.; Momani, S.; Hadid, S.; Kumar, D. Computational analysis of fractional diffusion equations occurring in oil pollution. Mathematics 2022, 10, 3827. [Google Scholar] [CrossRef]
- Bhangale, N.; Kachhia, K.B.; Gómez-Aguilar, J.F. A new iterative method with Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative. Eng. Comput. 2022, 38, 2125–2138. [Google Scholar] [CrossRef]
- Sene, N. Analytical solutions and numerical schemes of certain generalized fractional diffusion models. Eur. Phys. J. Plus 2019, 134, 199. [Google Scholar] [CrossRef]
- Li, C.; Zeng, F. Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos 2012, 22, 1230014. [Google Scholar] [CrossRef]
- Rahman, K.; Hussain, S.; Wei, X. An Efficient High-Accuracy RBF-HFD Scheme for Caputo Time-Fractional Sub-Diffusion Problems with Integral Boundaries. Fractal Fract. 2025, 9, 694. [Google Scholar] [CrossRef]
- Sontakke, B.R.; Shelke, A.S. Approximate scheme for time fractional diffusion equation and its applications. Glob. J. Pure Appl. Math. 2017, 13, 4333–4345. [Google Scholar]
- Wang, J.; Meng, X.; Yu, Y. Local error estimate of L1 scheme for time-fractional convection–diffusion-reaction equation on a star-shaped pipe network. Chin. J. Phys. 2025, 97, 44–66. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 2006, 22, 87–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Liao, H. Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 2014, 265, 195–210. [Google Scholar] [CrossRef]
- Liu, L.B.; Xu, L.; Zhang, Y. Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation. Math. Comput. Simul. 2023, 209, 87–101. [Google Scholar] [CrossRef]
- Stynes, M.; O’Riordan, E.; Gracia, J.L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef]
- Ford, N.J.; Xiao, J.; Yan, Y. A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 2011, 14, 454–474. [Google Scholar] [CrossRef]
- Iweobodo, D.C.; Abanum, G.C.; Ochonogor, N.I.; Njoseh, I.N. A Galerkin finite element technique with Iweobodo-Mamadu-Njoseh wavelet (IMNW) basis function for the solution of time-fractional advection–diffusion problems. Part. Differ. Equ. Appl. Math. 2024, 12, 100965. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Ma, J.T. Moving finite element methods for time fractional partial differential equations. Sci. China Math. 2013, 56, 1287–1300. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.D.; Pasciak, J.E.; Zhou, Z. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 2014, 35, 561–582. [Google Scholar] [CrossRef]
- Zeng, F.; Li, C.; Liu, F.; Turner, L. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 2013, 35, A2976–A3000. [Google Scholar] [CrossRef]
- Cao, J.Y.; Xu, C.J.; Wang, Z.Q. A high order finite difference/spectral approximations to the time fractional diffusion equations. Adv. Mater. Res. 2014, 875, 781–785. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Lv, C.; Xu, C. Improved error estimates of a finite difference/spectral method for time-fractional diffusion equations. Int. J. Numer. Anal. Model. 2015, 12, 384–400. [Google Scholar]
- Ujevic, N. Error inequalities for a generalized trapezoid rule. Appl. Math. Lett. 2006, 19, 32–37. [Google Scholar] [CrossRef]




| 2.0026 | 2.0007 | 2.0002 | 2.0000 | ||
| 1.9980 | 1.9993 | 1.9990 | 1.9962 | ||
| 1.9909 | 1.9903 | 1.9682 | 1.8808 |
| 1.7305 | 1.7418 | 1.7491 | 1.7496 | ||
| 1.4802 | 1.4864 | 1.4905 | 1.4930 | ||
| 1.1926 | 1.1960 | 1.1978 | 1.1988 |
| 1.9981 | 1.9995 | 1.9997 | 1.9998 | ||
| 1.9977 | 1.9994 | 1.9999 | 1.9998 | ||
| 1.9974 | 1.9994 | 1.9998 | 2.0000 |
| 1.9981 | 1.9995 | 1.9997 | 1.9998 | ||
| 1.9979 | 1.9995 | 1.9998 | 1.9997 | ||
| 1.9983 | 1.9996 | 1.9992 | 2.0000 |
| 1.6975 | 1.7147 | 1.7282 | 1.7407 | ||
| 1.4722 | 1.4810 | 1.4868 | 1.4908 | ||
| 1.1909 | 1.1950 | 1.1972 | 1.1985 |
| 1.7205 | 1.7341 | 1.7447 | 1.7537 | ||
| 1.4789 | 1.4854 | 1.4898 | 1.4928 | ||
| 1.1950 | 1.1972 | 1.1985 | 1.1991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, J.; Jiang, Y. A Finite Difference Method for Caputo Generalized Time Fractional Diffusion Equations. Fractal Fract. 2026, 10, 19. https://doi.org/10.3390/fractalfract10010019
Li J, Zhang J, Jiang Y. A Finite Difference Method for Caputo Generalized Time Fractional Diffusion Equations. Fractal and Fractional. 2026; 10(1):19. https://doi.org/10.3390/fractalfract10010019
Chicago/Turabian StyleLi, Jun, Jiejing Zhang, and Yingjun Jiang. 2026. "A Finite Difference Method for Caputo Generalized Time Fractional Diffusion Equations" Fractal and Fractional 10, no. 1: 19. https://doi.org/10.3390/fractalfract10010019
APA StyleLi, J., Zhang, J., & Jiang, Y. (2026). A Finite Difference Method for Caputo Generalized Time Fractional Diffusion Equations. Fractal and Fractional, 10(1), 19. https://doi.org/10.3390/fractalfract10010019
