Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring
Abstract
:1. Introduction
2. Environmental Justice at the Global Level
3. Environmental Justice at the Local Level
3.1. Air Pollution Monitoring Problems
3.1.1. Limitations of Different Air Pollution Monitoring Technologies with Stationary Networks
3.1.2. Do We Measure What We Really Need to?
3.1.3. Security and State/Commercial Secrets
3.2. Issues Related to Air Pollution Modeling Using AL/ML
3.2.1. Accuracy of Input Data
3.2.2. Validity of Other Input Data Underlying the Model
3.2.3. Black Box Models and Other Artificial Intelligence Models
3.3. Is Monitoring and Predicting Necessary at All?
3.3.1. To What Extent Are the Economic Costs Legitimate?
3.3.2. Going around in Circles (Costs of Public Monitoring Systems)
3.3.3. Substitution of Concepts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenzi, A. Why urbanisation and health? Acta Biomed. 2019, 90, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Marlier, M.E.; Jina, A.S.; Kinney, P.L.; DeFries, R.S. Extreme Air Pollution in Global Megacities. Curr. Clim. Chang. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strokal, M.; Bai, Z.; Franssen, W.; Hofstra, N.; Koelmans, A.A.; Ludwig, F.; Ma, L.; Van Puijenbroek, P.; Spanier, J.E.; Vermeulen, L.C.; et al. Urbanization: An increasing source of multiple pollutants to rivers in the 21st century. Npj Urban Sustain. 2021, 1, 24. [Google Scholar] [CrossRef]
- Kosheleva, N.E.; Nikiforova, E.M. Long-Term Dynamics of Urban Soil Pollution with Heavy Metals in Moscow. Appl. Environ. Soil Sci. 2016, 4, 5602795. [Google Scholar] [CrossRef] [Green Version]
- Galitskova, Y.M.; Murzayeva, A.I. Urban Soil Contamination. Procedia Eng. 2016, 153, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Gruebner, O.; Rapp, M.A.; Adli, M.; Kluge, U.; Galea, S.; Heinz, A. Cities and Mental Health. Dtsch. Ärztebl. 2017, 8, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Kuddus, M.A.; Tynan, T.; McBryde, E. Urbanization: A problem for the rich and the poor? Public Health Rev. 2020, 41, 1. [Google Scholar] [CrossRef]
- Morillas, J.M.B.; Gozalo, G.R.; González, D.M.; Moraga, P.A.; Vílchez-Gómez, R. Noise Pollution and Urban Planning. Curr. Pollut. Rep. 2018, 4, 208–219. [Google Scholar] [CrossRef]
- Oyedepo, S.O. Noise Pollution in Urban Areas: The Neglected Dimensions. Environ. Res. 2012, 6, 259–271. [Google Scholar] [CrossRef]
- De Paiva Vianna, K.M.; Cardoso, M.R.A.; Rodrigues, R.M.C. Noise pollution and annoyance: An urban soundscapes study. Noise Health 2015, 17, 125–133. [Google Scholar] [CrossRef]
- Liang, Y.-Q.; Li, J.-W.; Li, J.; Valimaki, S.K. Impact of urbanization on plant diversity: A case study in built-up areas of Beijing. For. Stud. China 2008, 10, 179–188. [Google Scholar] [CrossRef]
- Fineschi, S.; Loreto, F. A Survey of Multiple Interactions Between Plants and the Urban Environment. Front. For. Glob. Chang. 2020, 3, 30. [Google Scholar] [CrossRef]
- Lüttge, U.; Buckeridge, M. Trees: Structure and function and the challenges of urbanization. Trees 2020, 2020, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Czaja, M.; Kołton, A.; Muras, P. The Complex Issue of Urban Trees—Stress Factor Accumulation and Ecological Service Possibilities. Forests 2020, 11, 932. [Google Scholar] [CrossRef]
- Mandoki, R.; Orr, J. The social acceptance of mass produced residential buildings among Hungarian young adults. Archit. Eng. Des. Manag. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Eremia, M.; Toma, L.; Sanduleac, M. The Smart City Concept in the 21st Century. Procedia Eng. 2017, 181, 12–19. [Google Scholar] [CrossRef]
- Cugurullo, F. Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Front. Sustain. Cities 2020, 2, 38. [Google Scholar] [CrossRef]
- Bokhari, S.A.A.; Myeong, S. Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability 2022, 14, 620. [Google Scholar] [CrossRef]
- Ranganathan, M.; Bratman, E. From Urban Resilience to Abolitionist Climate Justice in Washington, DC. Antipode 2019, 53, 115–137. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Masucci, V.; Pearsall, H.; Wiig, A. The Smart City Conundrum for Social Justice: Youth Perspectives on Digital Technologies and Urban Transformations. Ann. Am. Assoc. Geogr. 2019, 110, 476–484. [Google Scholar] [CrossRef]
- The Lancet Infectious Diseases. Time for Africa to future-proof, starting with COVID-19. Lancet. Infect. Dis. 2022, 22, 151. [Google Scholar] [CrossRef]
- Mutombo, P.N.; Fallah, M.P.; Munodawafa, D.; Kabel, A.; Houeto, D.; Goronga, T.; Mweemba, J.; Balance, G.; Onya, H.; Kamba, R.S.; et al. COVID-19 vaccine hesitancy in Africa: A call to action. Lancet Glob. Health 2022, 10, 320–321. [Google Scholar] [CrossRef]
- Khankeh, H.R.; Farrokhi, M.; Khanjani, M.S.; Momtaz, Y.A.; Forouzan, A.S.; Norouzi, M.; Ahmadi, S.; Harouni, G.G.; Roudini, J.; Ghanaatpisheh, E.; et al. The Barriers, Challenges, and Strategies of COVID-19 (SARS-CoV-2) Vaccine Acceptance: A Concurrent Mixed-Method Study in Tehran City, Iran. Vaccines 2021, 9, 1248. [Google Scholar] [CrossRef]
- Mohammed, A.; Tomori, O.; Nkengasong, J.N. Lessons from the elimination of poliomyelitis in Africa. Nat. Rev. Immunol. 2021, 21, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Cromar, K.R.; Duncan, B.N.; Bartonova, A.; Benedict, K.; Brauer, M.; Habre, R.; Hagler, G.S.W.; Haynes, J.A.; Khan, S.; Kilaru, V.; et al. Air Pollution Monitoring for Health Research and Patient Care. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2019, 16, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Wehn, U.; Almomani, A. Incentives and barriers for participation in community-based environmental monitoring and information systems: A critical analysis and integration of the literature. Environ. Sci. Policy 2019, 101, 341–357. [Google Scholar] [CrossRef]
- Windy: Wind Map & Weather Forecast. Available online: https://www.windy.com/ (accessed on 28 March 2022).
- Sentinel Online—ESA. Available online: https://sentinels.copernicus.eu/web/sentinel/home (accessed on 28 March 2022).
- Empowering the World to Breathe Cleaner Air. Available online: https://www.iqair.com/ru/air-quality-map (accessed on 28 March 2022).
- Dudley, S.E.; Peacock, M. Improving Regulatory Science: A Case Study of the National Ambient Air Quality Standards. Supreme Court. Econ. Rev. 2016, 24, 49–99. [Google Scholar] [CrossRef] [Green Version]
- Idrees, Z.; Zheng, L. Low cost air pollution monitoring systems: A review of protocols and enabling technologies. Ind. Inf. Integr. 2020, 17, 100123. [Google Scholar] [CrossRef]
- WHO. Measurement of Particulate Matter (PM10 and PM2.5) in Europe. Available online: http://www.euro.who.int/document/e58139.pdf (accessed on 20 May 2022).
- Ngo, N.D.; Jang, J. Long-Term Measurement of PM2.5 Mass Concentration Using an Electrostatic Particle Concentrator-Based Quartz Crystal Microbalance Integrated with Carbon Dioxide Aerosol Jets for PM Sensing in Remote Areas. IEEE Access 2021, 9, 90715–90726. [Google Scholar] [CrossRef]
- Cho, C.; Clair, J.M.S.; Liao, J.; Wolfe, G.; Jeong, S.; Kang, D.; Choi, J.; Shin, M.; Park, J.; Park, J.-H.; et al. Evolution of formaldehyde (HCHO) in a plume originating from a petrochemical industry and its volatile organic compounds (VOCs) emission rate estimation. Elementa 2021, 9, 00015. [Google Scholar] [CrossRef]
- Krupnova, T.G.; Rakova, O.V.; Bondarenko, K.A.; Saifullin, A.F.; Popova, D.A.; Potgieter-Vermaak, S.; Godoi, R.H.M. Elemental Composition of PM2.5, PM10, and Health Risks Assessment in the Industrial Districts of Chelyabinsk, South Ural Region, Russia. Int. J. Environ. Res. Public Health 2021, 18, 12354. [Google Scholar] [CrossRef]
- Vinson, A.; Sidwell, A.; Black, O.; Roper, C. Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5. Atmosphere 2020, 11, 1086. [Google Scholar] [CrossRef]
- Park, M.; Joo, H.S.; Lee, K.; Jang, M.; Kim, S.D.; Kim, I.; Borlaza, L.J.S.; Lim, H.; Shin, H.; Chung, K.H.; et al. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 2018, 8, 17007. [Google Scholar] [CrossRef]
- Jia, Y.-Y.; Wang, Q.; Liu, T. Toxicity Research of PM2.5 Compositions in Vitro. Int. J. Environ. Res. Public Health 2017, 14, 232. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.O.; Shen, Y.; Pang, Y.Y.; Leung, W.K.; Zhao, N.; Yang, S. Diamond quantum sensors: From physics to applications on condensed matter research. Funct. Diam. 2021, 1, 160–173. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Dong, D.; Petersen, I.R. On the capability of a class of quantum sensors. Automatica 2021, 129, 109612. [Google Scholar] [CrossRef]
- Holnicki, P. Uncertainty in Integrated Modelling of Air Quality. In Advanced Air Pollution; Nejadkoorki, F., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Lemeš, S. Influence of Input Data on the Quality of Air Pollution Distribution Computer Simulations. In Proceedings of the Regional Symposium on Air Quality in Cities, Sarajevo, Bosnia and Herzegovina, 30–31 January 2020; pp. 148–163. [Google Scholar]
- Martín-Baos, J.A.; Rodriguez-Benitez, L.; García-Ródenas, R.; Liu, J. IoT based monitoring of air quality and traffic using regression analysis. Appl. Soft Comput. 2022, 115, 108282. [Google Scholar] [CrossRef]
- Modi, Y.; Teli, R.; Mehta, A.; Shah, K.; Shah, M. A comprehensive review on intelligent traffic management using machine learning algorithms. Innov. Infrastruct. Solut. 2022, 7, 128. [Google Scholar] [CrossRef]
- Jong, W.; Van der Linde, V. Clean diesel and dirty scandal: The echo of Volkswagen’s dieselgate in an intra-industry setting. Public Relat. Rev. 2022, 48, 102146. [Google Scholar] [CrossRef]
- Strittmatter, A.; Lechner, M. Sorting in the used-car market after the Volkswagen emission scandal. J Env. Econ Manag. 2020, 101, 102305. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhang, Q.; Shi, Y.; Wang, D. On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China. Atmos. Environ. 2007, 41, 3095–3107. [Google Scholar] [CrossRef]
- Huang, Y.; Mok, W.-C.; Yam, Y.-S.; Zhou, J.L.; Surawski, N.C.; Organ, B.; Chan, E.F.C.; Mofijur, M.; Mahlia, T.M.I.; Ong, H.C. Evaluating in-use vehicle emissions using air quality monitoring stations and on-road remote sensing systems. Sci. Total Environ. 2020, 740, 139868. [Google Scholar] [CrossRef] [PubMed]
- Kenny, E.M.; Ford, C.; Quinn, M.; Keane, M.T. Explaining black-box classifiers using post-hoc explanations-by-example: The effect of explanations and error-rates in XAI user studies. Artif. Intel. 2021, 294, 103459. [Google Scholar] [CrossRef]
- Rudin, C.; Radin, J. Why Are We Using Black Box Models in AI When We Don’t Need To? A Lesson from an Explainable AI Competition. HDSR 2019, 1. [Google Scholar] [CrossRef]
- Fan, J.; Han, F.; Liu, H. Challenges of Big Data Analysis. Natl. Sci. Rev. 2014, 1, 293–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rissanen, J. Order Estimation by Accumulated Prediction Errors. J. Appl. Probab. 1986, 23, 55–61. Available online: https://www.ssc.wisc.edu/~bhansen/718/Rissanen1986.pdf (accessed on 20 May 2022). [CrossRef]
- Martínez-García, M.; Hernández-Lemus, E. Data Integration Challenges for Machine Learning in Precision Medicine. Front. Med. 2021, 8, 784455. [Google Scholar] [CrossRef]
- Andras, P.; Esterle, L.; Guckert, M.; Han, T.A.; Lewis, P.R.; Milanovic, K.; Payne, T.; Perret, C.; Pitt, G.; Powers, S.T.; et al. Trusting intelligent machines: Deepening trust within socio-technical systems. IEEE Technol. Soc. Mag. 2018, 37, 76–83. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupnova, T.G.; Rakova, O.V.; Bondarenko, K.A.; Tretyakova, V.D. Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring. Big Data Cogn. Comput. 2022, 6, 75. https://doi.org/10.3390/bdcc6030075
Krupnova TG, Rakova OV, Bondarenko KA, Tretyakova VD. Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring. Big Data and Cognitive Computing. 2022; 6(3):75. https://doi.org/10.3390/bdcc6030075
Chicago/Turabian StyleKrupnova, Tatyana G., Olga V. Rakova, Kirill A. Bondarenko, and Valeria D. Tretyakova. 2022. "Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring" Big Data and Cognitive Computing 6, no. 3: 75. https://doi.org/10.3390/bdcc6030075
APA StyleKrupnova, T. G., Rakova, O. V., Bondarenko, K. A., & Tretyakova, V. D. (2022). Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring. Big Data and Cognitive Computing, 6(3), 75. https://doi.org/10.3390/bdcc6030075