Next Article in Journal
A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling
Next Article in Special Issue
Influence of Pressure Fluctuations on the Mean Value of Different Pneumatic Probes
Previous Article in Journal / Special Issue
Effects of the Approximations Embodied in the Momentum Theory as Applied to the NREL PHASE VI Wind Turbine
Article Menu

Export Article

Open AccessArticle
Int. J. Turbomach. Propuls. Power 2017, 2(2), 10;

Adjoint-Based Design Optimisation of an Internal Cooling Channel U-Bend for Minimised Pressure Losses

Queen Mary University of London, Mile End Road, London E1 4NS, UK
Von Karman Institute, Waterloosesteenweg 72, 1640 Sint-Genesius-Rode, Belgium
This paper is an extended version of our paper in Proceedings of the European Turbomachinery Conference ETC12, 2017, Paper No. 293.
Author to whom correspondence should be addressed.
Academic Editor: Marcello Manna
Received: 26 May 2017 / Revised: 26 May 2017 / Accepted: 2 June 2017 / Published: 21 June 2017
Full-Text   |   PDF [4295 KB, uploaded 21 June 2017]   |  


The success of shape optimisation depends significantly on the parametrisation of the shape. Ideally, it defines a very rich variation in shape, allows for rapid grid generation of high quality, and expresses the shape in a standard Computer Aided Design (CAD) representation. While most existing parametrisation methods fail at least one of these criteria, this work introduces a novel parametrisation method, which satisfies all three. A tri-variate B-spline volume is used to define the volume to be optimised. The position of the external control points are used as design parameters, while the internal control points are repositioned to ensure regularity of the transformation. The grid generation process transforms a Cartesian grid (defined in parametric space) to the physical space using the tri-variate net of control points. This process guarantees a high grid quality even for large deformations, and has extremely low computational cost as it only involves a transformation from parameter space to physical space. This allows the computation of the grid sensitivities with respect to the design variables at a fraction of the cost of a Computational Fluid Dynamics (CFD) iteration, therefore allowing the use of one-shot methods. This novel parametrisation is applied to the shape optimisation of a U-bend passage of a turbine-blade serpentine-cooling channel with the objective to minimise pressure losses. A steady state, Reynolds-Averaged, density-based Navier-Stokes solver is used to predict the pressure losses at a Reynolds number of 40,000. The sensitivities of the objective function with respect to the control points are computed using a hand-derived adjoint solver and geometry generation system. A one-shot approach is used to simultaneously converge flow, gradient and design, resulting in a rapid design approach with a design time equivalent to approximately 10 normal CFD runs, while still maintaining a CAD representation of the geometry. A large reduction in pressure loss is obtained, and the flow in the optimal geometry is analysed in detail. View Full-Text
Keywords: internal cooling channel; adjoint-based optimisation; tri-variate B-spline internal cooling channel; adjoint-based optimisation; tri-variate B-spline

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Verstraete, T.; Müller, L.; Müller, J.-D. Adjoint-Based Design Optimisation of an Internal Cooling Channel U-Bend for Minimised Pressure Losses. Int. J. Turbomach. Propuls. Power 2017, 2, 10.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Turbomach. Propuls. Power EISSN 2504-186X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top