#
A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Governing Equations and Numerical Scheme

## 3. Blade and Dissipative Body Force Model

## 4. Secondary Flow Model

## 5. Tip Leakage Model

## 6. Applications

#### 6.1. T106 Cascade

#### 6.2. CT3 Transonic Stage

^{®}i7-4770 CPU @3.40 GHz (Dresden, Germany). A comparable convergence level in a steady, 3D, viscous, parallel calculation with the TRAF code requires a computational time of about half an hour on a reasonably coarse mesh.

## 7. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Nomenclature

## Latin Symbols

A | tip gap area |

b | tangential blockage factor $b=\frac{{\vartheta}_{PS}-{\vartheta}_{SS}}{2\pi /N}$ |

${c}_{d}$ | tip leakage discharge coefficient |

d | dissipating body force |

$\mathcal{F},\mathcal{G}$ | inviscid flux vectors |

f | blade body force |

H | specific total enthalpy |

J | Jacobian |

M | Mach number |

m | meridional coordinate |

$\dot{m}$ | mass flow rate |

N | number of blades |

p | pressure |

R | gas constant |

r | radius |

$\mathcal{S}$ | source term vector |

s | specific entropy |

$s,n,h$ | intrinsic coordinates |

T | absolute temperature, leakage loss distribution function |

t | time |

u | axial velocity |

$\mathcal{U},\mathcal{V}$ | contravariant velocities in $\xi $ and $\eta $ directions |

v | radial velocity |

W | power |

w | tangential velocity |

$x,r,\vartheta $ | cylindrical coordinates |

Z | secondary flow penetration depth |

${z}_{0}$ | vortex characteristic length |

## Greek Symbols

$\Gamma $ | vortex circulation, streamsurface |

$\eta $ | efficiency |

$\zeta $ | normalized spanwise coordinate, loss coefficient, $\zeta =\frac{{p}_{t1}-{p}_{t2}}{{p}_{t2}-{p}_{2}}$ |

$\nu $ | kinematic fluid viscosity |

$\xi ,\eta $ | curvilinear coordinates |

$\rho $ | fluid density |

$\Phi $ | secondary loss distribution function |

$\Omega $ | angular velocity |

$\omega $ | vorticity |

## Subscripts

1, 2 | cascade inlet, outlet |

b | blockage-related |

f | force-related |

$is$ | isentropic |

$PS$ | pressure side |

$ref$ | reference |

$SS$ | pressure side |

t | total quantity |

## Superscripts

T | transposed |

## Abbreviations

CFD | Computational Fluid Dynamics |

EU | European Union |

RMS | Root Mean Square |

TATEF2 | Turbine Aero-Thermal External Flows |

TF | Throughflow |

## References

- Smith, L.H. The Radial-Equilibrium Equation of Turbomachinery. J. Eng. Gas Turb. Power
**1966**, 88, 1–12. [Google Scholar] [CrossRef] - Novak, R.A. Streamline Curvature Computing Procedures for Fluid Flow Problems. J. Eng. Gas Turb. Power
**1967**, 89, 478–490. [Google Scholar] [CrossRef] - Sturmayr, A.; Hirsch, C. Shock Representation by Euler Throughflow Models and Comparison with Pitch-Averaged Navier-Stokes Solutions. In Proceedings of the Fourteenth International Symposium on Breathing Engines (ISABE), Florence, Italy, 5–10 September 1999; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1999; pp. 99–7281. [Google Scholar]
- Simon, J.F.; Léonard, O. A Throughflow Analysis Tool Based on the Navier-Stokes Equations. In Proceedings of the 6th European Turbomachinery Conference, Lille, France, 7–11 March 2005. [Google Scholar]
- Pacciani, R.; Rubechini, F.; Marconcini, M.; Arnone, A.; Cecchi, S.; Daccà, F. A CFD-Based throughflow Method with an Explicit Body Force Model and an Adaptive Formulation for the S2 Streamsurface. P. I. Mech. Eng. A-J. Pow.
**2016**, 230, 1–13. [Google Scholar] [CrossRef] - Pasquale, D.; Persico, G.; Rebay, S. Optimization of Turbomachinery Flow Surfaces Applying a CFD-Based Throughflow Method. J. Turbomach.
**2012**, 136, 031013. [Google Scholar] [CrossRef] - Petrovic, M.V.; Widermann, A. Through-Flow Analysis of Air-Cooled Gas Turbines. In Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. ASME Paper No. GT2012-69854. [Google Scholar]
- Arnone, A. Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method. J. Turbomach.
**1994**, 116, 435–445. [Google Scholar] [CrossRef] - Wu, C.H. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types; NACA TN 2604; National Advisory Commitee for Aeronautics: Cleveland, OH, USA, 1952. [Google Scholar]
- Duden, A.; Fottner, L. Influence of Taper, Reynolds Number and Mach Number on the Secondary Flow Field of a Highly Loaded Turbine Cascade. P. I. Mech. Eng. A-J. Pow.
**1997**, 211, 309–320. [Google Scholar] [CrossRef] - Jameson, A.; Schmidt, W.; Turkel, E. Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time–Stepping Schemes. In Proceedings of the AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, USA, 23–25 June 1981. AIAA Paper 81-1259. [Google Scholar]
- Hawthorne, W.R.; Armstrong, W.D. Rotational Flow through Cascades, Part II: The Circulation about the Cascade. Q. J. Mech. Appl. Math.
**1955**, 8, 280–292. [Google Scholar] [CrossRef] - Benner, M.W.; Sjolander, S.A.; Moustapha, S.H. An Empirical Prediction Method for Secondary Losses in Turbines—Part I: A New Loss Breakdown Scheme and Penetration Depth Correlation. J. Turbomach.
**2006**, 128, 273–280. [Google Scholar] [CrossRef] - Kacker, S.C.; Okapuu, U. A Mean Line Prediction Method for Axial Flow Turbine Efficiency. ASME J. Eng. Power
**1982**, 104, 111–119. [Google Scholar] [CrossRef] - Rains, D.A. Tip Clearance Flows in Axial Flow Compressors and Pumps. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1954. [Google Scholar]
- Yaras, M.I.; Sjolander, S.A. Prediction of Tip—Leakage Losses in Axial Turbines. J. Turbomach.
**1992**, 114, 204–210. [Google Scholar] [CrossRef] - Denton, J.D. The 1993 IGTI Scholar Lecture—Loss Mechanisms in Turbomachines. J. Turbomach.
**1993**, 115, 621–656. [Google Scholar] [CrossRef] - Paniagua, G.; Yasa, T.; de la Loma, A.; Coton, T. Unsteady Strong Shock Interactions in a Transonic Turbine: Experimental and Numerical Analysis. J. Propul. Power
**2008**, 24, 722–731. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Sketch of a blade row with the intrinsic coordinate system; and (

**b**) Lamb–Oseen vortex and secondary velocities.

**Figure 2.**Comparisons between 3D computational fluid dynamics (CFD) and throughflow results in terms of spanwise distributions of (

**a**) secondary deviation angle [deg] and (

**b**) loss coefficient for different values of the ${c}_{1}$ constant.

**Figure 4.**Predicted and measured spanwise distributions of (

**a**) secondary deviation angle [deg] and (

**b**) loss coefficient for the T106 cascade with tapered endwalls [10].

**Figure 6.**Predicted and measured spanwise distributions of flow quantities in Plane 3 for the CT3 stage at Nom condition with and without 3D effects (abs. flow angle expressed in [deg]).

**Figure 7.**Predicted and measured spanwise distributions of flow quantities in Plane 3 for the CT3 stage at High and Low conditions (abs. flow angle expressed in [deg]).

${\mathit{M}}_{2,\mathit{i}\mathit{s}}$ | ${\mathit{M}}_{3,\mathit{i}\mathit{s}}$ | ${\mathit{p}}_{\mathit{t}1}/{\mathit{p}}_{\mathit{t}3}$ | |
---|---|---|---|

Low | $1.071$ | $0.65$ | $2.19$ |

Nom | $1.242$ | $0.97$ | $3.19$ |

High | $1.249$ | $1.18$ | $3.85$ |

W (kW) | ${\mathit{\eta}}_{\mathbf{tt}}$ | |
---|---|---|

Low: Exp./ TF w 3D/ TF w/o 3D | $713/737/746$ | $0.933/0.9360/0.946$ |

Nom: Exp./ TF w 3D/ TF w/o 3D | $1003/1033/1047$ | $0.891/0.9130/0.925$ |

High: Exp./ TF w 3D/ TF w/o 3D | $1108/1141/1155$ | $0.889/0.9108/0.921$ |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pacciani, R.; Marconcini, M.; Arnone, A.
A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling. *Int. J. Turbomach. Propuls. Power* **2017**, *2*, 11.
https://doi.org/10.3390/ijtpp2030011

**AMA Style**

Pacciani R, Marconcini M, Arnone A.
A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling. *International Journal of Turbomachinery, Propulsion and Power*. 2017; 2(3):11.
https://doi.org/10.3390/ijtpp2030011

**Chicago/Turabian Style**

Pacciani, Roberto, Michele Marconcini, and Andrea Arnone.
2017. "A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling" *International Journal of Turbomachinery, Propulsion and Power* 2, no. 3: 11.
https://doi.org/10.3390/ijtpp2030011