Review of Orbital Magnetism in Graphene-Based Moiré Materials
Abstract
:1. Introduction
2. Experimental Discovery of Orbital Magnetism
2.1. Twisted Bilayer Graphene
2.2. Aligned ABC Trilayer Graphene on Boron Nitride
2.3. Twisted Monolayer-Bilayer Graphene
3. Theoretical Reports on Orbital Magnetism
4. Discussion and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Luican, A.; dos Santos, J.M.B.L.; Neto, A.H.C.; Reina, A.; Kong, J.; Andrei, E.Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109–113. [Google Scholar] [CrossRef]
- Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H.C.P.; Huang, S.; Larentis, S.; Corbet, C.M.; Taniguchi, T.; Watanabe, K.; et al. van der Waals Heterostructures with High Accuracy Rotational Alignment. Nano Lett. 2016, 16, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Bistritzer, R.; MacDonald, A.H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Kaxiras, E. Electronic structure theory of weakly interacting bilayers. Phys. Rev. B 2016, 93, 235153. [Google Scholar] [CrossRef]
- Nam, N.N.T.; Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 2017, 96, 075311. [Google Scholar] [CrossRef]
- Koshino, M.; Yuan, N.F.Q.; Koretsune, T.; Ochi, M.; Kuroki, K.; Fu, L. Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene. Phys. Rev. X 2018, 8, 031087. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608. [Google Scholar] [CrossRef]
- Xian, L.; Claassen, M.; Kiese, D.; Scherer, M.M.; Trebst, S.; Kennes, D.M.; Rubio, A. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Nat. Commun. 2021, 12, 5644. [Google Scholar] [CrossRef]
- Kennes, D.M.; Claassen, M.; Xian, L.; Georges, A.; Millis, A.J.; Hone, J.; Dean, C.R.; Basov, D.N.; Pasupathy, A.N.; Rubio, A. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 2021, 17, 155–163. [Google Scholar] [CrossRef]
- Wang, L.; Shih, E.-M.; Ghiotto, A.; Xian, L.; Rhodes, D.A.; Tan, C.; Claassen, M.; Kennes, D.M.; Bai, Y.; Kim, B.; et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 2020, 580, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.; Moody, G.; Wu, F.; Lu, X.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D.A.; Quan, J.; Singh, A.; et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Regan, E.C.; Wang, D.; Jin, C.; Utama, M.I.B.; Gao, B.; Wei, X.; Zhao, S.; Zhao, W.; Zhang, Z.; Yumigeta, K.; et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363. [Google Scholar] [CrossRef]
- Liu, X.; Hao, Z.; Khalaf, E.; Lee, J.Y.; Ronen, Y.; Yoo, H.; Najafabadi, D.H.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221–225. [Google Scholar] [CrossRef]
- Shen, C.; Chu, Y.; Wu, Q.; Li, N.; Wang, S.; Zhao, Y.; Tang, J.; Liu, J.; Tian, J.; Watanabe, K.; et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 2020, 16, 520–525. [Google Scholar] [CrossRef]
- Chen, G.; Sharpe, A.L.; Fox, E.J.; Zhang, Y.-H.; Wang, S.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 2020, 579, 56–61. [Google Scholar] [CrossRef]
- Chen, G.; Sharpe, A.L.; Fox, E.J.; Wang, S.; Lyu, B.; Jiang, L.; Li, H.; Watanabe, K.; Taniguchi, T.; Crommie, M.F.; et al. Tunable Orbital Ferromagnetism at Noninteger Filling of a Moiré Superlattice. Nano Lett. 2022, 22, 238–245. [Google Scholar] [CrossRef]
- Polshyn, H.; Zhu, J.; Kumar, M.A.; Zhang, Y.; Yang, F.; Tschirhart, C.L.; Serlin, M.; Watanabe, K.; Taniguchi, T.; MacDonald, A.H.; et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 2020, 588, 66–70. [Google Scholar] [CrossRef]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Evidence of Orbital Ferromagnetism in Twisted Bilayer Graphene Aligned to Hexagonal Boron Nitride. Nano Lett. 2021, 21, 4299–4304. [Google Scholar] [CrossRef] [PubMed]
- Tschirhart, C.L.; Serlin, M.; Polshyn, H.; Shragai, A.; Xia, Z.; Zhu, J.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Huber, M.E.; et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 2021, 372, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A.F.; Dean, C.R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, L.; Wu, S.; Lyu, B.; Li, H.; Chittari, B.L.; Watanabe, K.; Taniguchi, T.; Shi, Z.; Jung, J.; et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 2019, 15, 237–241. [Google Scholar] [CrossRef]
- Chen, G.; Sharpe, A.L.; Gallagher, P.; Rosen, I.T.; Fox, E.J.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J.M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 2020, 583, 215–220. [Google Scholar] [CrossRef]
- Burg, G.W.; Zhu, J.; Taniguchi, T.; Watanabe, K.; MacDonald, A.H.; Tutuc, E. Correlated Insulating States in Twisted Double Bilayer Graphene. Phys. Rev. Lett. 2019, 123, 197702. [Google Scholar] [CrossRef]
- de Vries, F.K.; Zhu, J.; Portolés, E.; Zheng, G.; Masseroni, M.; Kurzmann, A.; Taniguchi, T.; Watanabe, K.; MacDonald, A.H.; Ensslin, K.; et al. Combined Minivalley and Layer Control in Twisted Double Bilayer Graphene. Phys. Rev. Lett. 2020, 125, 176801. [Google Scholar] [CrossRef]
- He, M.; Li, Y.; Cai, J.; Liu, Y.; Watanabe, K.; Taniguchi, T.; Xu, X.; Yankowitz, M. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 2020, 17, 26–30. [Google Scholar] [CrossRef]
- Song, Z.; Wang, Z.; Shi, W.; Li, G.; Fang, C.; Bernevig, B.A. All Magic Angles in Twisted Bilayer Graphene are Topological. Phys. Rev. Lett. 2019, 123, 036401. [Google Scholar] [CrossRef]
- Po, H.C.; Zou, L.; Senthil, T.; Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 2019, 99, 195455. [Google Scholar] [CrossRef]
- Herzog-Arbeitman, J.; Song, Z.-D.; Regnault, N.; Bernevig, B.A. Hofstadter Topology: Noncrystalline Topological Materials at High Flux. Phys. Rev. Lett. 2020, 125, 236804. [Google Scholar] [CrossRef] [PubMed]
- Lian, B.; Xie, F.; Bernevig, B.A. Landau level of fragile topology. Phys. Rev. B 2020, 102, 041402. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 1988, 61, 2015–2018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Mao, D.; Cao, Y.; Jarillo-Herrero, P.; Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 2019, 99, 075127. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Z.; Gao, J.; Dai, X. Quantum Valley Hall Effect, Orbital Magnetism, and Anomalous Hall Effect in Twisted Multilayer Graphene Systems. Phys. Rev. X 2019, 9, 031021. [Google Scholar] [CrossRef]
- Serlin, M.; Tschirhart, C.L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A.F. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 2020, 367, 900–903. [Google Scholar] [CrossRef]
- Bultinck, N.; Chatterjee, S.; Zaletel, M.P. Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene. Phys. Rev. Lett. 2020, 124, 166601. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Mao, D.; Senthil, T. Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model. Phys. Rev. Res. 2019, 1, 033126. [Google Scholar] [CrossRef]
- Liu, J.; Dai, X. Theories for the correlated insulating states and quantum anomalous Hall effect phenomena in twisted bilayer graphene. Phys. Rev. B 2021, 103, 035427. [Google Scholar] [CrossRef]
- Wu, F.; Das Sarma, S. Collective Excitations of Quantum Anomalous Hall Ferromagnets in Twisted Bilayer Graphene. Phys. Rev. Lett. 2020, 124, 046403. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bultinck, N.; Zaletel, M.P. Symmetry breaking and skyrmionic transport in twisted bilayer graphene. Phys. Rev. B 2020, 101, 165141. [Google Scholar] [CrossRef]
- Repellin, C.; Dong, Z.; Zhang, Y.-H.; Senthil, T. Ferromagnetism in Narrow Bands of Moiré Superlattices. Phys. Rev. Lett. 2020, 124, 187601. [Google Scholar] [CrossRef] [PubMed]
- Alavirad, Y.; Sau, J. Ferromagnetism and its stability from the one-magnon spectrum in twisted bilayer graphene. Phys. Rev. B 2020, 102, 235123. [Google Scholar] [CrossRef]
- Chen, S.; He, M.; Zhang, Y.-H.; Hsieh, V.; Fei, Z.; Watanabe, K.; Taniguchi, T.; Cobden, D.H.; Xu, X.; Dean, C.R.; et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. 2021, 17, 374–380. [Google Scholar] [CrossRef]
- Lau, C.N.; Bockrath, M.W.; Mak, K.F.; Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 2022, 602, 41–50. [Google Scholar] [CrossRef]
- Andrei, E.Y.; Efetov, D.K.; Jarillo-Herrero, P.; MacDonald, A.H.; Mak, K.F.; Senthil, T.; Tutuc, E.; Yazdani, A.; Young, A.F. The marvels of moiré materials. Nat. Rev. Mater. 2021, 6, 201–206. [Google Scholar] [CrossRef]
- He, F.; Zhou, Y.; Ye, Z.; Cho, S.-H.; Jeong, J.; Meng, X.; Wang, Y. Moiré Patterns in 2D Materials: A Review. ACS Nano 2021, 15, 5944–5958. [Google Scholar] [CrossRef]
- Shi, B.; Qi, P.; Jiang, M.; Dai, Y.; Lin, F.; Zhang, H.; Fang, Z. Exotic physical properties of 2D materials modulated by moiré superlattices. Mater. Adv. 2021, 2, 5542–5559. [Google Scholar] [CrossRef]
- Xiao, D.; Chang, M.-C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef]
- Xie, M.; MacDonald, A.H. Nature of the Correlated Insulator States in Twisted Bilayer Graphene. Phys. Rev. Lett. 2020, 124, 097601. [Google Scholar] [CrossRef] [PubMed]
- Hanke, J.-P.; Freimuth, F.; Nandy, A.K.; Zhang, H.; Blügel, S.; Mokrousov, Y. Role of Berry phase theory for describing orbital magnetism: From magnetic heterostructures to topological orbital ferromagnets. Phys. Rev. B 2016, 94, 121114. [Google Scholar] [CrossRef]
- Zhu, J.; Su, J.-J.; MacDonald, A.H. Voltage-Controlled Magnetic Reversal in Orbital Chern Insulators. Phys. Rev. Lett. 2020, 125, 227702. [Google Scholar] [CrossRef]
- Resta, R. Electrical polarization and orbital magnetization: The modern theories. J. Phys. Condens. Matter 2010, 22, 123201. [Google Scholar] [CrossRef]
- Meyer, A.J.P.; Asch, G. Experimental g′ and g Values of Fe, Co, Ni, and Their Alloys. J. Appl. Phys. 1961, 32, S330–S333. [Google Scholar] [CrossRef]
- Thole, B.T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946. [Google Scholar] [CrossRef]
- Oh, Y.-W.; Baek, S.-H.C.; Kim, Y.M.; Lee, H.Y.; Lee, K.-D.; Yang, C.-G.; Park, E.-S.; Lee, K.-S.; Kim, K.-W.; Go, G.; et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 2016, 11, 878–884. [Google Scholar] [CrossRef]
- He, W.-Y.; Goldhaber-Gordon, D.; Law, K.T. Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene. Nat. Commun. 2020, 11, 1650. [Google Scholar] [CrossRef]
- Li, S.-Y.; Zhang, Y.; Ren, Y.-N.; Liu, J.; Dai, X.; He, L. Experimental evidence for orbital magnetic moments generated by moiré-scale current loops in twisted bilayer graphene. Phys. Rev. B 2020, 102, 121406. [Google Scholar] [CrossRef]
- Chittari, B.L.; Chen, G.; Zhang, Y.; Wang, F.; Jung, J. Gate-Tunable Topological Flat Bands in Trilayer Graphene Boron-Nitride Moiré Superlattices. Phys. Rev. Lett. 2019, 122, 016401. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhang, Y.-H.; Li, Y.; Fei, Z.; Watanabe, K.; Taniguchi, T.; Xu, X.; Yankowitz, M. Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene. Nat. Commun. 2021, 12, 4727. [Google Scholar] [CrossRef] [PubMed]
- Matsukura, F.; Tokura, Y.; Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 2015, 10, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Chiba, D.; Werpachowska, A.; Endo, M.; Nishitani, Y.; Matsukura, F.; Dietl, T.; Ohno, H. Anomalous Hall Effect in Field-Effect Structures of (Ga,Mn)As. Phys. Rev. Lett. 2010, 104, 106601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, R.; Wang, X.; Wei, B.; Chen, B.; Wang, H.; Shi, G.; Wang, F.; Jia, B.; Ouyang, Y.; et al. Experimental Observation of the Gate-Controlled Reversal of the Anomalous Hall Effect in the Intrinsic Magnetic Topological Insulator MnBi2Te4 Device. Nano Lett. 2019, 20, 709–714. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Senthil, T. Quantum Hall spin liquids and their possible realization in moiré systems. Phys. Rev. B 2020, 102, 115127. [Google Scholar] [CrossRef]
- Repellin, C.; Senthil, T. Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition. Phys. Rev. Res. 2020, 2, 023238. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Dai, X. Pseudo Landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase. Phys. Rev. B 2019, 99, 155415. [Google Scholar] [CrossRef]
- Lopez-Bezanilla, A. Emergence of flat-band magnetism and half-metallicity in twisted bilayer graphene. Phys. Rev. Mater. 2019, 3, 054003. [Google Scholar] [CrossRef]
- Huang, C.; Wei, N.; MacDonald, A.H. Current-Driven Magnetization Reversal in Orbital Chern Insulators. Phys. Rev. Lett. 2021, 126, 056801. [Google Scholar] [CrossRef]
- Yue, K.; Liu, Y.; Lake, R.K.; Parker, A.C. A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors. Sci. Adv. 2019, 5, eaau8170. [Google Scholar] [CrossRef]
- Jiang, M.; Asahara, H.; Sato, S.; Kanaki, T.; Yamasaki, H.; Ohya, S.; Tanaka, M. Efficient full spin–orbit torque switching in a single layer of a perpendicularly magnetized single-crystalline ferromagnet. Nat. Commun. 2019, 10, 2590. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Upadhyaya, P.; Kou, X.; Lang, M.; Takei, S.; Wang, Z.; Tang, J.; He, L.; Chang, L.-T.; Montazeri, M.; et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 2014, 13, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Tschirhart, C.L.; Redekop, E.; Li, L.; Li, T.; Jiang, S.; Arp, T.; Sheekey, O.; Taniguchi, T.; Watanabe, K.; Huber, M.E.; et al. Intrinsic spin Hall torque in a moiré Chern magnet. Nat. Phys. 2023, 19, 807–813. [Google Scholar] [CrossRef]
- Tong, Q.; Liu, F.; Xiao, J.; Yao, W. Skyrmions in the Moiré of van der Waals 2D Magnets. Nano Lett. 2018, 18, 7194–7199. [Google Scholar] [CrossRef]
- Jadaun, P.; Cui, C.; Liu, S.; Incorvia, J.A.C. Adaptive cognition implemented with a context-aware and flexible neuron for next-generation artificial intelligence. PNAS Nexus 2022, 1, pgac206. [Google Scholar] [CrossRef]
- Viola, G.; DiVincenzo, D.P. Hall Effect Gyrators and Circulators. Phys. Rev. X 2014, 4, 021019. [Google Scholar] [CrossRef]
- Liu, Y.; Holder, T.; Yan, B. Chirality-Induced Giant Unidirectional Magnetoresistance in Twisted Bilayer Graphene. Innovation 2021, 2, 100085. [Google Scholar] [CrossRef]
Moiré Type | Moiré Material | Model | Moiré Properties |
---|---|---|---|
Twisted graphene homobilayer | Twisted bilayer graphene | Two-orbital extended Hubbard model [6] | Mott insulation [7]; superconductivity [8]; correlated quantum anomalous Hall (QAH) insulator [9] |
Twisted transition metal dichalcogenide (TMD) homobilayers | Twisted bilayer MoS2; MoSe2 | Asymmetric px–py Hubbard model [10] | Nematic (anti)ferromagnets [10] |
Twisted bilayer WS2, WSe2 | Hubbard model [11] | Correlated insulator [12] | |
Twisted bilayer WTe2 | Inverted band insulator; strong spin-orbit coupling [11] | Quantum spin Hall insulator; fractional Chern/topological insulator [11] | |
Twisted graphene heterobilayer | Graphene/hexagonal boron nitride (hBN) | Two-orbital extended Hubbard model [6] | Mott insulation [7]; superconductivity [8]; correlated QAH insulator [9] |
Twisted TMD heterobilayers | Twisted heterostructures of MoS2, WS2, and WSe2 | Doped multi-orbital Hubbard models [11] | Moiré excitons [13,14] |
Twisted WS2/WSe2 heterostructures | Hubbard model [11] | Correlated insulator [12]; Wigner crystals [15] | |
Twisted graphene multilayers | Twisted double bilayer graphene | Two-orbital extended Hubbard model [11] | Ferromagnetic insulator superconductivity [16,17] |
Aligned ABC trilayer graphene on boron nitride | Honeycomb | Correlated Chern insulator [18]; Orbital magnetism [19] | |
Twisted monolayer-bilayer graphene | Honeycomb | Quantized anomalous Hall effect and electrically tunable magnetism [20] | |
Twisted TMD multilayers | Twisted double bilayers of WSe2 110 | Hubbard model [11] | Correlated insulator [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadaun, P.; Soreé, B. Review of Orbital Magnetism in Graphene-Based Moiré Materials. Magnetism 2023, 3, 245-258. https://doi.org/10.3390/magnetism3030019
Jadaun P, Soreé B. Review of Orbital Magnetism in Graphene-Based Moiré Materials. Magnetism. 2023; 3(3):245-258. https://doi.org/10.3390/magnetism3030019
Chicago/Turabian StyleJadaun, Priyamvada, and Bart Soreé. 2023. "Review of Orbital Magnetism in Graphene-Based Moiré Materials" Magnetism 3, no. 3: 245-258. https://doi.org/10.3390/magnetism3030019
APA StyleJadaun, P., & Soreé, B. (2023). Review of Orbital Magnetism in Graphene-Based Moiré Materials. Magnetism, 3(3), 245-258. https://doi.org/10.3390/magnetism3030019