Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives
Abstract
:1. Background: Why Talk about Neonatal Sepsis?
2. Where Does the Current Classification of Neonatal Sepsis Come from?
2.1. Early-Onset Sepsis
2.2. Late-Onset Sepsis
3. Neonatal Sepsis: Some Numbers
4. The Role of Perinatal Risk Factors in Determining the Risk of Early-Onset Sepsis
5. Do the Symptoms of Neonatal Sepsis Vary with the Type of Early or Late Infection?
6. Neonatal Early-Onset Sepsis Calculator
7. Clinical Scoring Tools
- -
- Tollner sepsis score;
- -
- Hematologic Scoring System;
- -
- International Pediatric Consensus Conference statement on sepsis and organ dysfunction in pediatrics;
- -
- NNF clinical practice guidelines (National Neonatology Forum, India);
- -
- NEO–KISS Sepsis score;
- -
- Neonatal Sequential Organ Failure Assessment (nSOFA) score, designed by Wynn and Polin to predict mortality from LOS in pre-term, very-low-birth-weight (VLBW) infants [38];
- -
- NeoSep Severity Score, from the recent worldwide observational NeoOBS study, which included data from 3204 babies in low- and middle-income nations, emphasizing the critical need for clinical trials to guide the worldwide use of antibiotics for neonatal sepsis [39].
8. Blood Cultures and New Molecular Methods
9. The Use of Sepsis Biomarkers
9.1. Biomarkers in Early-Onset Sepsis
9.2. Biomarkers in Late-Onset Sepsis
10. New Advances in Treatment
10.1. Antibiotic Regimens in Early-Onset and Late-Onset Sepsis
10.2. Antibiotic Lock Therapy
10.3. Blood Product Transfusions
10.3.1. Intravenous Immunoglobulins
10.3.2. Platelet Transfusions
10.3.3. Exchange Transfusions
11. HeRO Monitoring, Hemodynamic Evaluation, Artificial Intelligence, and Future Research Perspectives
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The Global Burden of Paediatric and Neonatal Sepsis: A Systematic Review. Lancet Respir. Med. 2018, 6, 223–230. [Google Scholar] [CrossRef]
- Weiss, S.L.; Fitzgerald, J.C.; Pappachan, J.; Wheeler, D.; Jaramillo-Bustamante, J.C.; Salloo, A.; Singhi, S.C.; Erickson, S.; Roy, J.A.; Bush, J.L.; et al. Global Epidemiology of Pediatric Severe Sepsis: The Sepsis Prevalence, Outcomes, and Therapies Study. Am. J. Respir. Crit. Care Med. 2015, 191, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, B.; Yusuf, K.; Sauve, R. Neurodevelopmental Outcomes of Very Low Birth Weight Infants with Neonatal Sepsis: Systematic Review and Meta-Analysis. J. Perinatol. 2013, 33, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Horbar, J.D.; Greenberg, L.T.; Buzas, J.S.; Ehret, D.E.Y.; Soll, R.F.; Edwards, E.M. Trends in Mortality and Morbidities for Infants Born 24 to 28 Weeks in the US: 1997–2021. Pediatrics 2024, 153, e2023064153. [Google Scholar] [CrossRef]
- Jacob, J.; Kamitsuka, M.; Clark, R.H.; Kelleher, A.S.; Spitzer, A.R. Etiologies of NICU Deaths. Pediatrics 2015, 135, e59–e65. [Google Scholar] [CrossRef]
- Hayes, R.; Hartnett, J.; Semova, G.; Murray, C.; Murphy, K.; Carroll, L.; Plapp, H.; Hession, L.; O’Toole, J.; McCollum, D.; et al. Neonatal Sepsis Definitions from Randomised Clinical Trials. Pediatr. Res. 2023, 93, 1141–1148. [Google Scholar] [CrossRef]
- Falciglia, G.; Hageman, J.R.; Schreiber, M.; Alexander, K. Antibiotic Therapy and Early Onset Sepsis. Neoreviews 2012, 13, e86–e93. [Google Scholar] [CrossRef]
- Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews 2022, 23, 738–755. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, G.; Romano, R.; Iotti, C.; Tegoni, F.; Perrone, S.; Esposito, S. An Overview of Antibiotic Therapy for Early- and Late-Onset Neonatal Sepsis: Current Strategies and Future Prospects. Antibiotics 2024, 13, 250. [Google Scholar] [CrossRef]
- Giannoni, E.; Agyeman, P.K.A.; Stocker, M.; Posfay-Barbe, K.M.; Heininger, U.; Spycher, B.D.; Bernhard-Stirnemann, S.; Niederer-Loher, A.; Kahlert, C.R.; Donas, A.; et al. Neonatal Sepsis of Early Onset, and Hospital-Acquired and Community-Acquired Late Onset: A Prospective Population-Based Cohort Study. J. Pediatr. 2018, 201, 106–114.e4. [Google Scholar] [CrossRef]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D.; Harris-Haman, P.A. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care 2021, 21, 49–60. [Google Scholar] [CrossRef]
- Schrag, S.J.; Farley, M.M.; Petit, S.; Reingold, A.; Weston, E.J.; Pondo, T.; Jain, J.H.; Lynfield, R. Epidemiology of Invasive Early-Onset Neonatal Sepsis, 2005 to 2014. Pediatrics 2016, 138, e20162013. [Google Scholar] [CrossRef]
- Flannery, D.D.; Puopolo, K.M. Neonatal Early-Onset Sepsis. Neoreviews 2022, 23, 756–770. [Google Scholar] [CrossRef]
- Nanduri, S.A.; Petit, S.; Smelser, C.; Apostol, M.; Alden, N.B.; Harrison, L.H.; Lynfield, R.; Vagnone, P.S.; Burzlaff, K.; Spina, N.L.; et al. Epidemiology of Invasive Early-Onset and Late-Onset Group B Streptococcal Disease in the United States, 2006 to 2015: Multistate Laboratory and Population-Based Surveillance. JAMA Pediatr. 2019, 173, 224–233. [Google Scholar] [CrossRef]
- Berardi, A.; Spada, C.; Reggiani, M.L.B.; Creti, R.; Baroni, L.; Capretti, M.G.; Ciccia, M.; Fiorini, V.; Gambini, L.; Gargano, G.; et al. Group B Streptococcus Early-Onset Disease and Observation of Well-Appearing Newborns. PLoS ONE 2019, 14, e0212784. [Google Scholar] [CrossRef]
- Nishihara, Y.; Dangor, Z.; French, N.; Madhi, S.; Heyderman, R. Challenges in Reducing Group B Streptococcus Disease in African Settings. Arch. Dis. Child. 2017, 102, 72–77. [Google Scholar] [CrossRef]
- Dangor, Z.; Seale, A.C.; Baba, V.; Kwatra, G. Early-Onset Group B Streptococcal Disease in African Countries and Maternal Vaccination Strategies. Front. Public Health 2023, 11, 1214844. [Google Scholar] [CrossRef]
- Russell, N.; Barday, M.; Okomo, U.; Dramowski, A.; Sharland, M.; Bekker, A. Early-versus Late-Onset Sepsis in Neonates—Time to Shift the Paradigm? Clin. Microbiol. Infect. 2023, 30, 38–43. [Google Scholar] [CrossRef]
- Stoll, B.J.; Puopolo, K.M.; Hansen, N.I.; Sánchez, P.J.; Bell, E.F.; Carlo, W.A.; Cotten, C.M.; D’Angio, C.T.; Kazzi, S.N.J.; Poindexter, B.B.; et al. Early-Onset Neonatal Sepsis 2015 to 2017, the Rise of Escherichia coli, and the Need for Novel Prevention Strategies. JAMA Pediatr. 2020, 174, e200593. [Google Scholar] [CrossRef]
- Li, W.; Tapiainen, T.; Brinkac, L.; Lorenzi, H.A.; Moncera, K.; Tejesvi, M.; Salo, J.; Nelson, K.E. Vertical Transmission of Gut Microbiome and Antimicrobial Resistance Genes in Infants Exposed to Antibiotics at Birth. J. Infect. Dis. 2021, 224, 1236–1246. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Pablo, J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Pre-term Neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef]
- Flannery, D.D.; Edwards, E.M.; Puopolo, K.M.; Horbar, J.D. Early-Onset Sepsis among Very Pre-term Infants. Pediatrics 2021, 148, e2021052456. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Higgins, R.D.; Fanaroff, A.A.; Duara, S.; Goldberg, R.; Laptook, A.; Walsh, M.; Oh, W.; Hale, E. Very Low Birth Weight Pre-term Infants with Early Onset Neonatal Sepsis: The Predominance of Gram-Negative Infections Continues in the National Institute of Child Health and Human Development Neonatal Research Network, 2002–2003. Pediatr. Infect. Dis. J. 2005, 24, 635–639. [Google Scholar] [CrossRef]
- Pammi, M.; Weisman, L.E. Late-Onset Sepsis in Pre-term Infants: Update on Strategies for Therapy and Prevention. Expert Rev. Anti-Infect. Ther. 2015, 13, 487–504. [Google Scholar] [CrossRef]
- Gonçalves, B.P.; Procter, S.R.; Paul, P.; Chandna, J.; Lewin, A.; Seedat, F.; Koukounari, A.; Dangor, Z.; Leahy, S.; Santhanam, S.; et al. Group B Streptococcus Infection during Pregnancy and Infancy: Estimates of Regional and Global Burden. Lancet Glob. Health 2022, 10, e807–e819. [Google Scholar] [CrossRef]
- McGovern, M.; Giannoni, E.; Kuester, H.; Turner, M.A.; van den Hoogen, A.; Bliss, J.M.; Koenig, J.M.; Keij, F.M.; Mazela, J.; Finnegan, R.; et al. Challenges in Developing a Consensus Definition of Neonatal Sepsis. Pediatr. Res. 2020, 88, 14–26. [Google Scholar] [CrossRef]
- Guo, L.; Han, W.; Su, Y.; Wang, N.; Chen, X.; Ma, J.; Liang, J.; Hao, L.; Ren, C. Perinatal Risk Factors for Neonatal Early-Onset Sepsis: A Meta-Analysis of Observational Studies. J. Matern.-Fetal Neonatal Med. 2023, 36, 2259049. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Eichenwald, E.C.; Puopolo, K.M. Neonatal Early-Onset Sepsis Evaluations among Well-Appearing Infants: Projected Impact of Changes in CDC GBS Guidelines. J. Perinatol. 2013, 33, 198–205. [Google Scholar] [CrossRef]
- Vaccina, E.; Luglio, A.; Ceccoli, M.; Lecis, M.; Leone, F.; Zini, T.; Toni, G.; Lugli, L.; Lucaccioni, L.; Iughetti, L.; et al. Brief Comments on Three Existing Approaches for Managing Neonates at Risk of Early-Onset Sepsis. Ital. J. Pediatr. 2021, 47, 3–7. [Google Scholar] [CrossRef]
- NICE Guidlines. Neonatal Infection: Antibiotics for Prevention and Treatment. 2021. Available online: www.nice.org.uk/guidance/ng195 (accessed on 30 June 2024).
- Achten, N.B.; Klingenberg, C.; Benitz, W.E.; Stocker, M.; Schlapbach, L.J.; Giannoni, E.; Bokelaar, R.; Driessen, G.J.A.; Brodin, P.; Uthaya, S.; et al. Association of Use of the Neonatal Early-Onset Sepsis Calculator With Reduction in Antibiotic Therapy and Safety A Systematic Review and Meta-Analysis. JAMA Pediatr. 2019, 173, 1032–1034. [Google Scholar] [CrossRef]
- van der Weijden, B.M.; Achten, N.B.; Bekhof, J.; Evers, E.E.; van Dongen, O.; Rijpert, M.; Kamps, A.W.A.; ten Tusscher, G.W.; van Houten, M.A.; Plotz, F.B.; et al. Neonatal Early-Onset Sepsis Calculator Recommended Significantly Less Empiric Antibiotic Treatment than National Guidelines. Acta Paediatr. Int. J. Paediatr. 2020, 109, 2549–2551. [Google Scholar] [CrossRef]
- Berardi, A.; Zinani, I.; Bedetti, L.; Vaccina, E.; Toschi, A.; Toni, G.; Lecis, M.; Leone, F.; Monari, F.; Cozzolino, M.; et al. Should We Give Antibiotics to Neonates with Mild Non-Progressive Symptoms? A Comparison of Serial Clinical Observation and the Neonatal Sepsis Risk Calculator. Front. Pediatr. 2022, 10, 882416. [Google Scholar] [CrossRef]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal Sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Hofer, N.; Zacharias, E.; Müller, W.; Resch, B. Performance of the Definitions of the Systemic Inflammatory Response Syndrome and Sepsis in Neonates. J. Perinat. Med. 2012, 40, 587–590. [Google Scholar] [CrossRef]
- Bromiker, R.; Elron, E.; Klinger, G. Do Neonatal Infections Require a Positive Blood Culture? Am. J. Perinatol. 2020, 37, S18–S21. [Google Scholar] [CrossRef]
- Wynn, J.L.; Polin, R.A. A Neonatal Sequential Organ Failure Assessment Score Predicts Mortality to Late-Onset Sepsis in Preterm Very Low Birth Weight Infants. Pediatr. Res. 2020, 88, 85–90. [Google Scholar] [CrossRef]
- Russell, N.J.; Stohr, W.; Plakka, N.; Cook, A.; Berkley, J.A.; Adhisivam, B.; Agarwal, R.; Ahmed, N.U.; Balasegaram, M.; Ballot, D.; et al. Patterns of Antibiotic Use, Pathogens, and Prediction of Mortality in Hospitalized Neonates and Young Infants with Sepsis: A Global Neonatal Sepsis Observational Cohort Study (NeoOBS). PLoS Med. 2023, 20, e1004179. [Google Scholar] [CrossRef]
- Fleiss, N.; Coggins, S.A.; Lewis, A.N.; Zeigler, A.; Cooksey, K.E.; Walker, L.A.; Husain, A.N.; De Jong, B.S.; Wallman-Stokes, A.; Alrifai, M.W.; et al. Evaluation of the Neonatal Sequential Organ Failure Assessment and Mortality Risk in Pre-term Infants with Late-Onset Infection. JAMA Netw. Open 2021, 4, e2036518. [Google Scholar] [CrossRef]
- Poggi, C.; Ciarcià, M.; Miselli, F.; Dani, C. Prognostic Accuracy of Neonatal SOFA Score versus SIRS Criteria in Pre-term Infants with Late-Onset Sepsis. Eur. J. Pediatr. 2023, 182, 4731–4739. [Google Scholar] [CrossRef]
- Huber, S.; Hetzer, B.; Crazzolara, R.; Orth-Höller, D. The Correct Blood Volume for Paediatric Blood Cultures: A Conundrum? Clin. Microbiol. Infect. 2020, 26, 168–173. [Google Scholar] [CrossRef]
- Woodford, E.C.; Dhudasia, M.B.; Puopolo, K.M.; Skerritt, L.A.; Bhavsar, M.; DeLuca, J.; Mukhopadhyay, S. Neonatal Blood Culture Inoculant Volume: Feasibility and Challenges. Pediatr. Res. 2021, 90, 1086–1092. [Google Scholar] [CrossRef]
- Cantey, J.B.; Sánchez, P.J. Prolonged Antibiotic Therapy for “Culture-Negative” Sepsis in Pre-term Infants: It’s Time to Stop! J. Pediatr. 2011, 159, 707–708. [Google Scholar] [CrossRef]
- De Rose, D.U.; Ronchetti, M.P.; Santisi, A.; Bernaschi, P.; Martini, L.; Porzio, O.; Dotta, A.; Auriti, C. Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care. Trop. Med. Infect. Dis. 2024, 9, 63. [Google Scholar] [CrossRef]
- Tomar, P.; Garg, A.; Gupta, R.; Singh, A.; Gupta, N.K.; Upadhyay, A. Simultaneous Two-Site Blood Culture for Diagnosis of Neonatal Sepsis. Indian Pediatr. 2017, 54, 199–203. [Google Scholar] [CrossRef]
- Coggins, S.A.; Harris, M.C.; Srinivasan, L. Dual-Site Blood Culture Yield and Time to Positivity in Neonatal Late-Onset Sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 475–480. [Google Scholar] [CrossRef]
- Hajjar, N.; Ting, J.Y.; Shah, P.S.; Lee, K.-S.; Dunn, M.S.; Srigley, J.A.; Khurshid, F. Blood Culture Collection Practices in NICU.; A National Survey. Paediatr. Child. Health 2023, 28, 166–171. [Google Scholar] [CrossRef]
- Gottschalk, A.; Coggins, S.; Dhudasia, M.B.; Flannery, D.D.; Healy, T.; Puopolo, K.M.; Gerber, J.; Mukhopadhyay, S. Utility of Anaerobic Blood Cultures in Neonatal Sepsis Evaluation. J. Pediatr. Infect. Dis. Soc. 2024, 13, 406–412. [Google Scholar] [CrossRef]
- Marks, L.; de Waal, K.; Ferguson, J.K. Time to Positive Blood Culture in Early Onset Neonatal Sepsis: A Retrospective Clinical Study and Review of the Literature. J. Paediatr. Child. Health 2020, 56, 1371–1375. [Google Scholar] [CrossRef]
- Kuzniewicz, M.W.; Mukhopadhyay, S.; Li, S.; Walsh, E.M.; Puopolo, K.M. Time to Positivity of Neonatal Blood Cultures for Early-Onset Sepsis. Pediatr. Infect. Dis. J. 2020, 39, 634–640. [Google Scholar] [CrossRef]
- De Rose, D.U.; Perri, A.; Auriti, C.; Gallini, F.; Maggio, L.; Fiori, B.; D’inzeo, T.; Spanu, T.; Vento, G. Time to Positivity of Blood Cultures Could Inform Decisions on Antibiotics Administration in Neonatal Early-Onset Sepsis. Antibiotics 2021, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Briker, S.M.; Flannery, D.D.; Dhudasia, M.B.; Coggins, S.A.; Woodford, E.; Walsh, E.M.; Li, S.; Puopolo, K.M.; Kuzniewicz, M.W. Time to Positivity of Blood Cultures in Neonatal Late-Onset Bacteraemia. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Arias-Felipe, A.; Ramírez-Berrios, J.; Recio-Martinez, R.; Orellana-Miguel, M.A.; Fontiveros-Escalona, D.; Bergón-Sendín, E.; De Alba-Romero, C. Determining Time to Positivity of Blood Cultures in a Neonatal Unit. J. Pediatr. Infect. Dis. Soc. 2022, 11, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Oeser, C.; Vergnano, S.; Naidoo, R.; Anthony, M.; Chang, J.; Chow, P.; Clarke, P.; Embleton, N.; Kennea, N.; Pattnayak, S.; et al. Neonatal Invasive Fungal Infection in England 2004–2010. Clin. Microbiol. Infect. 2014, 20, 936–941. [Google Scholar] [CrossRef]
- Peri, A.M.; Ling, W.; Furuya-Kanamori, L.; Harris, P.N.A.; Paterson, D.L. Performance of BioFire Blood Culture Identification 2 Panel (BCID2) for the Detection of Bloodstream Pathogens and Their Associated Resistance Markers: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies. BMC Infect. Dis. 2022, 22, 794. [Google Scholar] [CrossRef]
- Graff, K.E.; Palmer, C.; Anarestani, T.; Velasquez, D.; Hamilton, S.; Pretty, K.; Parker, S.; Dominguez, S.R. Clinical Impact of the Expanded BioFire Blood Culture Identification 2 Panel in a U.S. Children’s Hospital. Microbiol. Spectr. 2021, 9, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Berinson, B.; Both, A.; Berneking, L.; Christner, M.; Lütgehetmann, M.; Aepfelbacher, M.; Rohde, H. Usefulness of Biofire Filmarray Bcid2 for Blood Culture Processing in Clinical Practice. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef]
- Messacar, K.; Hurst, A.L.; Child, J.; Campbell, K.; Palmer, C.; Hamilton, S.; Dowell, E.; Robinson, C.C.; Parker, S.K.; Dominguez, S.R. Clinical Impact and Provider Acceptability of Real-Time Antimicrobial Stewardship Decision Support for Rapid Diagnostics in Children with Positive Blood Culture Results. J. Pediatr. Infect. Dis. Soc. 2017, 6, 267–274. [Google Scholar] [CrossRef]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e00292-22. [Google Scholar] [CrossRef]
- Schmatz, M.; Srinivasan, L.; Grundmeier, R.W.; Elci, O.U.; Weiss, S.L.; Masino, A.J.; Tremoglie, M.; Ostapenko, S.; Harris, M.C. Surviving Sepsis in a Referral Neonatal Intensive Care Unit: Association between Time to Antibiotic Administration and In-Hospital Outcomes. J. Pediatr. 2020, 217, 59–65.e1. [Google Scholar] [CrossRef]
- Prusakov, P.; Goff, D.A.; Wozniak, P.S.; Cassim, A.; Scipion, C.E.A.; Urzúa, S.; Ronchi, A.; Zeng, L.; Ladipo-Ajayi, O.; Aviles-Otero, N.; et al. A Global Point Prevalence Survey of Antimicrobial Use in Neonatal Intensive Care Units: The No-More-Antibiotics and Resistance (NO-MAS-R) Study. EClinicalMedicine 2021, 32, 100727. [Google Scholar] [CrossRef]
- But, Š.; Celar, B.; Fister, P. Tackling Neonatal Sepsis—Can It Be Predicted? Int. J. Environ. Res. Public Health 2023, 20, 3644. [Google Scholar] [CrossRef]
- Boscarino, G.; Migliorino, R.; Carbone, G.; Davino, G.; Dell’Orto, V.G.; Perrone, S.; Principi, N.; Esposito, S. Biomarkers of Neonatal Sepsis: Where We Are and Where We Are Going. Antibiotics 2023, 12, 1233. [Google Scholar] [CrossRef]
- Dong, Y.; Speer, C.P. Late-Onset Neonatal Sepsis: Recent Developments. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F257–F263. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Lee, J.H. Biomarkers for the Diagnosis of Neonatal Sepsis. Clin. Perinatol. 2021, 48, 215–227. [Google Scholar] [CrossRef]
- Maddaloni, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Caoci, S.; Bersani, I.; Ronchetti, M.P.; Auriti, C. The Emerging Role of Presepsin (P-Sep) in the Diagnosis of Sepsis in the Critically Ill Infant: A Literature Review. Int. J. Mol. Sci. 2021, 22, 12154. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, C.; De Rose, D.U.; Perulli, M.; Martini, L.; Bersani, I.; Campi, F.; Savarese, I.; Dotta, A.; Paola, M.; Cinzia, R. Perinatal Asphyxia Does Not Influence Presepsin Levels in Neonates: A Prospective Study. Acta Paediatr. 2024, 113, 453–460. [Google Scholar] [CrossRef]
- Stocker, M.; Giannoni, E. Game Changer or Gimmick: Inflammatory Markers to Guide Antibiotic Treatment Decisions in Neonatal Early-Onset Sepsis. Clin. Microbiol. Infect. 2023, 30, 22–27. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, L.M.; Fourie, E.; van den Brink, G.; Bekker, V.; van Houten, M.A. Diagnostic Value of Maternal, Cord Blood and Neonatal Biomarkers for Early-Onset Sepsis: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2024, 30, 850–857. [Google Scholar] [CrossRef]
- Brown, J.V.E.; Meader, N.; Wright, K.; Cleminson, J.; McGuire, W. Assessment of C-Reactive Protein Diagnostic Test Accuracy for Late-Onset Infection in Newborn Infants: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2020, 174, 260–268. [Google Scholar] [CrossRef]
- Stocker, M.; Van Herk, W.; Helou, S.; Dutta, S.; Fontana, M.S.; Schuerman, F.A.B.A.; van den Tooren-de Groot, R.K.; Wieringa, J.W.; Janota, J.; van der Meer-Kappelle, L.H.; et al. Procalcitonin-Guided Decision Making for Duration of Antibiotic Therapy in Neonates with Suspected Early-Onset Sepsis: A Multicentre, Randomised Controlled Trial (NeoPIns). Lancet 2017, 390, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Aloisio, E.; Dolci, A.; Panteghini, M. Procalcitonin: Between Evidence and Critical Issues. Clin. Chim. Acta 2019, 496, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Meem, M.; Modak, J.K.; Mortuza, R.; Morshed, M.; Islam, M.S.; Saha, S.K. Biomarkers for Diagnosis of Neonatal Infections: A Systematic Analysis of Their Potential as a Point-of-Care Diagnostics. J. Glob. Health 2011, 1, 201–209. [Google Scholar]
- Carpio, R.; Zapata, J.; Spanuth, E.; Hess, G. Utility of Presepsin (SCD14-ST) as a Diagnostic and Prognostic Marker of Sepsis in the Emergency Department. Clin. Chim. Acta 2015, 450, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Capossela, L.; Margiotta, G.; Ferretti, S.; Curatola, A.; Bertolaso, C.; Pansini, V.; Di Sarno, L.; Gatto, A. Presepsin as a Diagnostic Marker of Sepsis in Children and Adolescents: A Short Critical Update. Acta Biomed. 2023, 94, e2023062. [Google Scholar] [CrossRef]
- Ehl, S.; Gering, B.; Bartmann, P.; Högel, J.; Pohlandt, F. C-Reactive Protein Is a Useful Marker for Guiding Duration of Antibiotic Therapy in Suspected Neonatal Bacterial Infection. Pediatrics 1997, 99, 216–221. [Google Scholar] [CrossRef]
- Benitz, W.E.; Yan, M.Y.; Madan, A.; Ramachandra, P. Serial Serum C-Reactive Protein Levels in the Diagnosis of Neonatal Infection. Pediatrics 1998, 102, e41. [Google Scholar] [CrossRef]
- Auriti, C.; Fiscarelli, E.; Ronchetti, M.P.; Argentieri, M.; Marrocco, G.; Quondamcarlo, A.; Seganti, G.; Bagnoli, F.; Buonocore, G.; Serra, G.; et al. Procalcitonin in Detecting Neonatal Nosocomial Sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, 2010–2013. [Google Scholar] [CrossRef]
- Poggi, C.; Bianconi, T.; Gozzini, E.; Generoso, M.; Dani, C. Presepsin for the Detection of Late-Onset Sepsis in Pre-term Newborns. Pediatrics 2015, 135, 68–75. [Google Scholar] [CrossRef]
- Sabry, J.H.; Elfeky, O.A.; Elsadek, A.E.; Eldaly, A.A. Presepsin as an Early Reliable Diagnostic and Prognostic Marker of Neonatal Sepsis. Int. J. Adv. Res. 2016, 4, 1538–1549. [Google Scholar] [CrossRef]
- Miyosawa, Y.; Akazawa, Y.; Kamiya, M.; Nakamura, C.; Takeuchi, Y.; Kusakari, M.; Nakamura, T. Presepsin as a Predictor of Positive Blood Culture in Suspected Neonatal Sepsis. Pediatr. Int. 2018, 60, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Polin, R.A.; Papile, L.A.; Baley, J.E.; Benitz, W.; Carlo, W.A.; Cummings, J.; Kumar, P.; Tan, R.C.; Wang, K.S.; Watterberg, K.L.; et al. Management of Neonates with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2012, 129, 1006–1015. [Google Scholar] [CrossRef]
- Garrido, F.; Allegaert, K.; Arribas, C.; Villamor, E.; Raffaeli, G.; Paniagua, M.; Cavallaro, G. Variations in Antibiotic Use and Sepsis Management in Neonatal Intensive Care Units: A European Survey. Antibiotics 2021, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Bassler, D. Practice Variations and Rates of Late Onset Sepsis and Necrotizing Enterocolitis in Very Pre-term Born Infants, a Review. Transl. Pediatr. 2019, 8, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Litz, J.E.; Goedicke-Fritz, S.; Härtel, C.; Zemlin, M.; Simon, A. Management of Early- and Late-Onset Sepsis: Results from a Survey in 80 German NICUs. Infection 2019, 47, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Poggi, C.; Dani, C. New Antimicrobials for the Treatment of Neonatal Sepsis Caused by Multi-Drug-Resistant Bacteria: A Systematic Review. Antibiotics 2023, 12, 956. [Google Scholar] [CrossRef]
- Gominet, M.; Compain, F.; Beloin, C.; Lebeaux, D. Central Venous Catheters and Biofilms: Where Do We Stand in 2017? APMIS 2017, 125, 365–375. [Google Scholar] [CrossRef]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K. Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef]
- Piersigilli, F.; Auriti, C.; Dotta, A.; Goffredo, B.M.; Cairoli, S.; Savarese, I.; Campi, F.; Corsetti, T.; Bersani, I. Use of Meropenem and Other Antimicrobial Lock Therapy in the Treatment of Catheter-Related Blood Stream Infections in Neonates: A Retrospective Study. Children 2022, 9, 614. [Google Scholar] [CrossRef]
- Savarese, I.; Yazami, S.; De Rose, D.U.; Carkeek, K.; Campi, F.; Auriti, C.; Danhaive, O.; Piersigilli, F. Use of 2% Taurolidine Lock Solution for Treatment and Prevention of Catheter-Related Bloodstream Infections in Neonates: A Feasibility Study. J. Hosp. Infect. 2024, 143, 76–81. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N. Adjunctive Therapy to Treat Neonatal Sepsis. Expert. Rev. Clin. Pharmacol. 2020, 13, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Alejandria, M.M.; Lansang, M.A.D.; Dans, L.F.; Mantaring, J.B. Intravenous Immunoglobulin for Treating Sepsis, Severe Sepsis and Septic Shock. Cochrane Database Syst. Rev. 2013, CD001090. [Google Scholar] [CrossRef]
- Capasso, L.; Borrelli, A.C.; Ferrara, T.; Coppola, C.; Cerullo, J.; Izzo, F.; Caiazza, R.; Lama, S.; Raimondi, F. Immunoglobulins in Neonatal Sepsis: Has the Final Word Been Said? Early Hum. Dev. 2014, 90, S47–S49. [Google Scholar] [CrossRef]
- Nassir, K.; Al-Saddi, Y.I.; Abbas, H.M.; Al Khames Aga, Q.A.; Al Khames Aga, L.A.; Oudah, A.A. Pentaglobin (Immunoglobulin M-Enriched Immunoglobulin) as Adjuvant Therapy for Premature and Very Low-Birth-Weight Neonates with Sepsis. Indian J. Pharmacol. 2021, 53, 364–370. [Google Scholar] [CrossRef]
- O’Reilly, D.; Murphy, C.A.; Drew, R.; El-Khuffash, A.; Maguire, P.B.; Ainle, F.N.; Mc Callion, N. Platelets in Pediatric and Neonatal Sepsis: Novel Mediators of the Inflammatory Cascade. Pediatr. Res. 2022, 91, 359–367. [Google Scholar] [CrossRef]
- Curley, A.; Stanworth, S.J.; Willoughby, K.; Fustolo-Gunnink, S.F.; Venkatesh, V.; Hudson, C.; Deary, A.; Hodge, R.; Hopkins, V.; Lopez Santamaria, B.; et al. Randomized Trial of Platelet-Transfusion Thresholds in Neonates. N. Engl. J. Med. 2019, 380, 242–251. [Google Scholar] [CrossRef]
- Mathias, S.; Balachander, B.; Bosco, A.; Britto, C.; Rao, S. The Effect of Exchange Transfusion on Mortality in Neonatal Sepsis: A Meta-Analysis. Eur. J. Pediatr. 2022, 181, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, K.D.; O’Shea, T.M. Heart Rate Characteristics: Physiomarkers for Detection of Late-Onset Neonatal Sepsis. Clin. Perinatol. 2010, 37, 581–598. [Google Scholar] [CrossRef]
- Rio, L.; Ramelet, A.S.; Ballabeni, P.; Stadelmann, C.; Asner, S.; Giannoni, E. Monitoring of Heart Rate Characteristics to Detect Neonatal Sepsis. Pediatr. Res. 2022, 92, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.H.; Fairchild, K.D. Heart Rate Characteristics Monitoring in the NICU: What Nurses Need to Know. Adv. Neonatal Care 2013, 13, 396–401. [Google Scholar] [CrossRef]
- Moorman, J.R.; Carlo, W.A.; Kattwinkel, J.; Schelonka, R.L.; Porcelli, P.J.; Navarrete, C.T.; Bancalari, E.; Aschner, J.L.; Whit Walker, M.; Perez, J.A.; et al. Mortality Reduction by Heart Rate Characteristic Monitoring in Very Low Birth Weight Neonates: A Randomized Trial. J. Pediatr. 2011, 159, 900–906.e1. [Google Scholar] [CrossRef]
- Fairchild, K.D. Predictive Monitoring for Early Detection of Sepsis in Neonatal ICU Patients. Curr. Opin. Pediatr. 2013, 25, 172–179. [Google Scholar] [CrossRef]
- Zeigler, A.C.; Ainsworth, J.E.; Fairchild, K.D.; Wynn, J.L.; Sullivan, B.A. Sepsis and Mortality Prediction in Very Low Birth Weight Infants: Analysis of HeRO and NSOFA. Am. J. Perinatol. 2023, 40, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Pugnaloni, F.; De Rose, D.U.; Kipfmueller, F.; Patel, N.; Ronchetti, M.P.; Dotta, A.; Bagolan, P.; Capolupo, I.; Auriti, C. Assessment of Hemodynamic Dysfunction in Septic Newborns by Functional Echocardiography: A Systematic Review. Pediatr. Res. 2024, 95, 1422–1431. [Google Scholar] [CrossRef]
- Sullivan, B.A.; Kausch, S.L.; Fairchild, K.D. Artificial and Human Intelligence for Early Identification of Neonatal Sepsis. Pediatr. Res. 2023, 93, 350–356. [Google Scholar] [CrossRef]
- Stocker, M.; Daunhawer, I.; Van Herk, W.; El Helou, S.; Dutta, S.; Schuerman, F.A.B.A.; Van Den Tooren-De Groot, R.K.; Wieringa, J.W.; Janota, J.; Van Der Meer-Kappelle, L.H.; et al. Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-Onset Sepsis. Pediatr. Infect. Dis. J. 2022, 41, 248–254. [Google Scholar] [CrossRef]
- Honoré, A.; Forsberg, D.; Adolphson, K.; Chatterjee, S.; Jost, K.; Herlenius, E. Vital Sign-Based Detection of Sepsis in Neonates Using Machine Learning. Acta Paediatr. 2023, 112, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Beirnaert, C.; Mahieu, L.; Laukens, K.; Meysman, P.; Mulder, A.; Van Laere, D. Clinical Decision Support for Improved Neonatal Care: The Development of a Machine Learning Model for the Prediction of Late-Onset Sepsis and Necrotizing Enterocolitis. J. Pediatr. 2024, 266, 113869. [Google Scholar] [CrossRef]
Diagnostic Tools | Criteria | Range |
---|---|---|
Tollner sepsis score |
| 0 (best)–24 (worst) |
Hematologic Scoring System |
| 0 (best)–7 (worst) |
International Pediatric Consensus Conference statement on sepsis and organ dysfunction in Pediatrics | Criteria for sepsis diagnosis, but without an objective numeric evaluation. | |
NNF clinical practice guidelines | Criteria for sepsis diagnosis, but without an objective numeric evaluation. | |
NEO–KISS Sepsis score | Criteria for sepsis diagnosis, but without an objective numeric evaluation. | |
Neonatal sequential organ failure assessment (nSOFA) score |
| 0 (best)–15 (worst) |
NeoSep Severity Score |
| 0 (best)–16 (worst) |
Common Pathogens | Suggested Empiric Antibiotic Therapy | |
---|---|---|
Early-onset sepsis | ||
Term and late pre-term infants (GA ≥ 34 weeks) |
| Penicillin (i.e., Ampicillin) + Aminoglycoside (i.e., Netilmicin, Gentamicin, or Amikacin upon local antibiotic resistance patterns) |
Pre-term infants (GA < 34 weeks) |
| |
Late-onset sepsis | ||
Term and late pre-term infants (GA ≥ 34 weeks) |
| For infants admitted from the community: Penicillin (i.e., Ampicillin) + Aminoglycoside (i.e., Netilmicin, Gentamicin, or Amikacin upon local antibiotic susceptibility patterns) [Alternative: Penicillin + Expanded-spectrum cephalosporin (i.e., Cefotaxime, Ceftazidime, or Cefepime upon local antibiotic susceptibility patterns)] For infants hospitalized since birth: Oxacillin or Vancomycin (if the neonate is MRSA-colonized and/or critically ill at presentation) + Aminoglycoside (typically Gentamicin, or Amikacin, upon local antibiotic susceptibility patterns) or Carbapenem (i.e., Meropenem, if there is concern for meningitis caused by a multidrug-resistant, gram-negative organism) |
Pre-term infants (GA < 34 weeks) |
|
Pathogen-Specific Therapy | |
---|---|
Group B Streptococcus | Penicillin G or Ampicillin |
Escherichia coli | Ampicillin (if Ampicillin-sensitive) Expanded-spectrum cephalosporin (i.e., cefotaxime, ceftazidime, or cefepime) |
Multidrug-resistant gram-negative bacilli (including ESBL-producing organisms) | Meropenem |
Listeria monocytogenes | Ampicillin and Gentamicin |
Methicillin-sensitive Staphylococcus aureus (MSSA) | Ampicillin or Oxacillin |
Methicillin-resistant Staphylococcus aureus (MRSA) | Vancomycin or Teicoplanin |
Vancomicin resistant Enterococci | Linezolid or Daptomycin |
Carbapenem-resistant Gram-negative organisms (CROs) | Colistin |
Antibiotic | Dosage |
---|---|
Amikacin | 3 mg/mL in 0.9% saline |
Meropenem | 2 mg/mL in 0.9% saline |
Micafungin | 5 mg/L (+70% ethanol) |
Vancomycin | 3 mg/mL in 0.9% saline |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rose, D.U.; Ronchetti, M.P.; Martini, L.; Rechichi, J.; Iannetta, M.; Dotta, A.; Auriti, C. Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives. Trop. Med. Infect. Dis. 2024, 9, 199. https://doi.org/10.3390/tropicalmed9090199
De Rose DU, Ronchetti MP, Martini L, Rechichi J, Iannetta M, Dotta A, Auriti C. Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives. Tropical Medicine and Infectious Disease. 2024; 9(9):199. https://doi.org/10.3390/tropicalmed9090199
Chicago/Turabian StyleDe Rose, Domenico Umberto, Maria Paola Ronchetti, Ludovica Martini, Jole Rechichi, Marco Iannetta, Andrea Dotta, and Cinzia Auriti. 2024. "Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives" Tropical Medicine and Infectious Disease 9, no. 9: 199. https://doi.org/10.3390/tropicalmed9090199
APA StyleDe Rose, D. U., Ronchetti, M. P., Martini, L., Rechichi, J., Iannetta, M., Dotta, A., & Auriti, C. (2024). Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives. Tropical Medicine and Infectious Disease, 9(9), 199. https://doi.org/10.3390/tropicalmed9090199