Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations
Abstract
:1. Introduction
2. Structure and Function of AI in Clinical Medicine
3. AI Applications in Clinical Medicine
4. Filling the Gaps in Clinical Infectious Diseases—How AI Can Contribute
4.1. Diagnostics
4.2. Surveillance and Outbreak Detection
4.3. Personalized Medicine
5. Limitations in the Use of AI
6. Legal and Ethical Issues in the Use of AI
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amisha; Malik, P.; Pathania, M.; Rathaur, V.K. Overview of Artificial Intelligence in Medicine. J. Fam. Med. Prim. Care 2019, 8, 2328–2331. [Google Scholar] [CrossRef]
- Krishnan, G.; Singh, S.; Pathania, M.; Gosavi, S.; Abhishek, S.; Parchani, A.; Dhar, M. Artificial Intelligence in Clinical Medicine: Catalyzing a Sustainable Global Healthcare Paradigm. Front. Artif. Intell. 2023, 6, 1227091. [Google Scholar] [CrossRef] [PubMed]
- Hamet, P.; Tremblay, J. Artificial Intelligence in Medicine. Metab. Clin. Exp. 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Pettit, R.W.; Fullem, R.; Cheng, C.; Amos, C.I. Artificial Intelligence, Machine Learning, and Deep Learning for Clinical Outcome Prediction. Emerg. Top. Life Sci. 2021, 5, 729–745. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Roggeveen, L.F.; Hassouni, A.E.; de Grooth, H.-J.; Girbes, A.R.J.; Hoogendoorn, M.; Elbers, P.W.G. Dutch ICU Data Sharing Against COVID-19 Collaborators Reinforcement Learning for Intensive Care Medicine: Actionable Clinical Insights from Novel Approaches to Reward Shaping and off-Policy Model Evaluation. Intensive Care Med. Exp. 2024, 12, 32. [Google Scholar] [CrossRef]
- Khajuria, R.; Sarwar, A. Reinforcement Learning in Medical Diagnosis: An Overview. In Proceedings of the Recent Innovations in Computing; Singh, P.K., Singh, Y., Kolekar, M.H., Kar, A.K., Gonçalves, P.J.S., Eds.; Springer: Singapore, 2022; pp. 179–188. [Google Scholar]
- Yu, C.; Dong, Y.; Liu, J.; Ren, G. Incorporating Causal Factors into Reinforcement Learning for Dynamic Treatment Regimes in HIV. BMC Med. Inform. Decis. Mak. 2019, 19, 60. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Kim, J.; Huang, K.; Luo, Y.; Wang, M. Deep Reinforcement Learning for Cost-Effective Medical Diagnosis. arXiv 2023, arXiv:2302.10261v2. [Google Scholar]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large Language Models in Medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef]
- Nadarzynski, T.; Miles, O.; Cowie, A.; Ridge, D. Acceptability of Artificial Intelligence (AI)-Led Chatbot Services in Healthcare: A Mixed-Methods Study. Digit. Health 2019, 5, 2055207619871808. [Google Scholar] [CrossRef]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial Intelligence in Disease Diagnosis: A Systematic Literature Review, Synthesizing Framework and Future Research Agenda. J. Ambient Intell. Hum. Comput. 2023, 14, 8459–8486. [Google Scholar] [CrossRef]
- Ogawa, S.; Namino, F.; Mori, T.; Sato, G.; Yamakawa, T.; Saito, S. AI Diagnosis of Heart Sounds Differentiated with Super StethoScope. J. Cardiol. 2024, 83, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Alshammri, R.; Alharbi, G.; Alharbi, E.; Almubark, I. Machine Learning Approaches to Identify Parkinson’s Disease Using Voice Signal Features. Front. Artif. Intell. 2023, 6, 1084001. [Google Scholar] [CrossRef]
- Steimetz, E.; Minkowitz, J.; Gabutan, E.C.; Ngichabe, J.; Attia, H.; Hershkop, M.; Ozay, F.; Hanna, M.G.; Gupta, R. Use of Artificial Intelligence Chatbots in Interpretation of Pathology Reports. JAMA Netw. Open 2024, 7, e2412767. [Google Scholar] [CrossRef]
- Ellis, J.; Hamer, M.K.; Akerson, M.; Andazola, M.; Moore, A.; Campbell, E.G.; DeCamp, M. Patient Perceptions of Chatbot Supervision in Health Care Settings. JAMA Netw. Open 2024, 7, e248833. [Google Scholar] [CrossRef]
- Cui, L.; Fan, Z.; Yang, Y.; Liu, R.; Wang, D.; Feng, Y.; Lu, J.; Fan, Y. Deep Learning in Ischemic Stroke Imaging Analysis: A Comprehensive Review. BioMed Res. Int. 2022, 2022, 2456550. [Google Scholar] [CrossRef]
- Kazemzadeh, S.; Yu, J.; Jamshy, S.; Pilgrim, R.; Nabulsi, Z.; Chen, C.; Beladia, N.; Lau, C.; McKinney, S.M.; Hughes, T.; et al. Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists. Radiology 2023, 306, 124–137. [Google Scholar] [CrossRef]
- Bektaş, B.; Emre, İ.E.; Kartal, E.; Gulsecen, S. Classification of Mammography Images by Machine Learning Techniques. In Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 20–23 September 2018; pp. 580–585. [Google Scholar]
- Patel, R.H.; Foltz, E.A.; Witkowski, A.; Ludzik, J. Analysis of Artificial Intelligence-Based Approaches Applied to Non-Invasive Imaging for Early Detection of Melanoma: A Systematic Review. Cancers 2023, 15, 4694. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital Pathology and Artificial Intelligence in Translational Medicine and Clinical Practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef]
- Zia, A.; Fletcher, C.; Bigwood, S.; Ratnakanthan, P.; Seah, J.; Lee, R.; Kavnoudias, H.; Law, M. Retrospective Analysis and Prospective Validation of an AI-Based Software for Intracranial Haemorrhage Detection at a High-Volume Trauma Centre. Sci. Rep. 2022, 12, 19885. [Google Scholar] [CrossRef] [PubMed]
- Voter, A.F.; Larson, M.E.; Garrett, J.W.; Yu, J.-P.J. Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures. AJNR Am. J. Neuroradiol. 2021, 42, 1550–1556. [Google Scholar] [CrossRef]
- Knudsen, J.E.; Ghaffar, U.; Ma, R.; Hung, A.J. Clinical Applications of Artificial Intelligence in Robotic Surgery. J. Robot. Surg. 2024, 18, 102. [Google Scholar] [CrossRef] [PubMed]
- Guni, A.; Varma, P.; Zhang, J.; Fehervari, M.; Ashrafian, H. Artificial Intelligence in Surgery: The Future Is Now. Eur. Surg. Res. 2024, 65, 22–39. [Google Scholar] [CrossRef]
- Bhadoria, P.; Gupta, G.; Agarwal, A. Viral Pandemics in the Past Two Decades: An Overview. J. Fam. Med. Prim. Care 2021, 10, 2745–2750. [Google Scholar] [CrossRef]
- Agrebi, S.; Larbi, A. Chapter 18—Use of Artificial Intelligence in Infectious Diseases. In Artificial Intelligence in Precision Health; Barh, D., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 415–438. ISBN 978-0-12-817133-2. [Google Scholar]
- Drain, P.K.; Hyle, E.P.; Noubary, F.; Freedberg, K.A.; Wilson, D.; Bishai, W.R.; Rodriguez, W.; Bassett, I.V. Diagnostic Point-of-Care Tests in Resource-Limited Settings. Lancet Infect. Dis. 2014, 14, 239–249. [Google Scholar] [CrossRef]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnnstics 2023, 13, 2760. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Go, T.; Kim, J.H.; Byeon, H.; Lee, S.J. Machine Learning-Based in-Line Holographic Sensing of Unstained Malaria-Infected Red Blood Cells. J. Biophotonics 2018, 11, e201800101. [Google Scholar] [CrossRef]
- Weis, C.; Cuénod, A.; Rieck, B.; Dubuis, O.; Graf, S.; Lang, C.; Oberle, M.; Brackmann, M.; Søgaard, K.K.; Osthoff, M.; et al. Direct Antimicrobial Resistance Prediction from Clinical MALDI-TOF Mass Spectra Using Machine Learning. Nat. Med. 2022, 28, 164–174. [Google Scholar] [CrossRef]
- Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.J.; Das, R. Effect of a Machine Learning-Based Severe Sepsis Prediction Algorithm on Patient Survival and Hospital Length of Stay: A Randomised Clinical Trial. BMJ Open Respir. Res. 2017, 4, e000234. [Google Scholar] [CrossRef]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Brownstein, J.S.; Freifeld, C.C.; Madoff, L.C. Digital Disease Detection—Harnessing the Web for Public Health Surveillance. N. Engl. J. Med. 2009, 360, 2153–2157. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Olson, D.R.; Shaman, J. Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City. PLoS Comput. Biol. 2016, 12, e1005201. [Google Scholar] [CrossRef]
- Paul, M.; Andreassen, S.; Tacconelli, E.; Nielsen, A.D.; Almanasreh, N.; Frank, U.; Cauda, R.; Leibovici, L.; TREAT Study Group. Improving Empirical Antibiotic Treatment Using TREAT, a Computerized Decision Support System: Cluster Randomized Trial. J. Antimicrob. Chemother. 2006, 58, 1238–1245. [Google Scholar] [CrossRef]
- Rawson, T.M.; Peiffer-Smadja, N.; Holmes, A. Artificial Intelligence in Infectious Diseases. In Artificial Intelligence in Medicine; Lidströmer, N., Ashrafian, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–14. ISBN 978-3-030-58080-3. [Google Scholar]
- Tran, N.K.; Albahra, S.; May, L.; Waldman, S.; Crabtree, S.; Bainbridge, S.; Rashidi, H. Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing. Clin. Chem. 2021, 68, 125–133. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Lin, A.; Xu, C.; Li, Z.; Liu, K.; Liu, B.; Ma, X.; Zhao, F.; Jiang, H.; et al. Algorithm for Optimized mRNA Design Improves Stability and Immunogenicity. Nature 2023, 621, 396–403. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef]
- Bonnici, V.; Cicceri, G.; Distefano, S.; Galletta, L.; Polignano, M.; Scaffidi, C. Covid19/IT the Digital Side of Covid19: A Picture from Italy with Clustering and Taxonomy. PLoS ONE 2022, 17, e0269687. [Google Scholar] [CrossRef]
- Gilbert, S. The EU Passes the AI Act and Its Implications for Digital Medicine Are Unclear. NPJ Digit. Med. 2024, 7, 135. [Google Scholar] [CrossRef]
- Chu, W.T.; Reza, S.M.S.; Anibal, J.T.; Landa, A.; Crozier, I.; Bağci, U.; Wood, B.J.; Solomon, J. Artificial Intelligence and Infectious Disease Imaging. J. Infect. Dis. 2023, 228, S322–S336. [Google Scholar] [CrossRef]
- Nazer, L.H.; Zatarah, R.; Waldrip, S.; Ke, J.X.C.; Moukheiber, M.; Khanna, A.K.; Hicklen, R.S.; Moukheiber, L.; Moukheiber, D.; Ma, H.; et al. Bias in Artificial Intelligence Algorithms and Recommendations for Mitigation. PLoS Digit. Health 2023, 2, e0000278. [Google Scholar] [CrossRef] [PubMed]
- Mittermaier, M.; Raza, M.M.; Kvedar, J.C. Bias in AI-Based Models for Medical Applications: Challenges and Mitigation Strategies. NPJ Digit. Med. 2023, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Pandey, S.; Gupta, A.; Dudani, P.; Gupta, S.; Rangarajan, K. Data Privacy in Healthcare: In the Era of Artificial Intelligence. Indian Dermatol. Online J. 2023, 14, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.; Wurhofer, D.; Strumegger, E.-M.; Stainer-Hochgatterer, A.; Kulnik, S.T.; Crutzen, R.; Niebauer, J. General Data Protection Regulation (GDPR) Toolkit for Digital Health. Stud. Health Technol. Inf. 2022, 290, 222–226. [Google Scholar] [CrossRef]
- Bretthauer, M.; Gerke, S.; Hassan, C.; Ahmad, O.F.; Mori, Y. The New European Medical Device Regulation: Balancing Innovation and Patient Safety. Ann. Intern. Med. 2023, 176, 844–848. [Google Scholar] [CrossRef]
- Desmet, T.; Brijs, M.; Vanderdonck, F.; Tops, S.; Simoens, S.; Huys, I. Implementing the EU HTA Regulation: Insights from Semi-Structured Interviews on Patient Expectations, Belgian and European Institutional Perspectives, and Industry Outlooks. Front. Pharmacol. 2024, 15, 1369508. [Google Scholar] [CrossRef]
- Green, B.L.; Murphy, A.; Robinson, E. Accelerating Health Disparities Research with Artificial Intelligence. Front. Digit. Health 2024, 6, 1330160. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.; de Manuel, A.; Parra, I.; Moyano, C.; Rueda, J.; Guersenzvaig, A.; Ausin, T.; Cruz, M.; Casacuberta, D.; Puyol, A. Bias in Algorithms of AI Systems Developed for COVID-19: A Scoping Review. Bioethical. Inq. 2022, 19, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Dankwa-Mullan, I.; Scheufele, E.L.; Matheny, M.E.; Quintana, Y.; Chapman, W.W.; Jackson, G.; South, B.R. A Proposed Framework on Integrating Health Equity and Racial Justice into the Artificial Intelligence Development Lifecycle. J. Health Care Poor Underserved 2021, 32, 300–317. [Google Scholar] [CrossRef]
- İbrahim, M.A.K. Legal Challenges of Artificial Intelligence in Healthcare. In Algorithmic Discrimination and Ethical Perspective of Artificial Intelligence; Kılıç, M., Bozkuş Kahyaoğlu, S., Eds.; Springer Nature: Singapore, 2024; pp. 147–160. ISBN 978-981-9963-27-0. [Google Scholar]
- Solaiman, B.; Malik, A. Regulating Algorithmic Care in the European Union: Evolving Doctor–Patient Models through the Artificial Intelligence Act (AI-Act) and the Liability Directives. Med. Law Rev. 2024, fwae033. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Li, Z.; He, Y.; Guo, Q.; Lu, Y.; Gu, S.; Wu, H. Potential Use of Artificial Intelligence in Infectious Disease: Take ChatGPT as an Example. Ann. BioMed Eng. 2023, 51, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- European Commission Artificial Intelligence—Questions and Answers. Available online: https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_1683 (accessed on 6 August 2024).
- von Burgsdorff, C. The Impact of the EU’s AI Act on the Medical Device Sector. Available online: https://www.ibanet.org/impact-european-union-artificial-intelligence-act (accessed on 6 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarantopoulos, A.; Mastori Kourmpani, C.; Yokarasa, A.L.; Makamanzi, C.; Antoniou, P.; Spernovasilis, N.; Tsioutis, C. Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations. Trop. Med. Infect. Dis. 2024, 9, 228. https://doi.org/10.3390/tropicalmed9100228
Sarantopoulos A, Mastori Kourmpani C, Yokarasa AL, Makamanzi C, Antoniou P, Spernovasilis N, Tsioutis C. Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations. Tropical Medicine and Infectious Disease. 2024; 9(10):228. https://doi.org/10.3390/tropicalmed9100228
Chicago/Turabian StyleSarantopoulos, Andreas, Christina Mastori Kourmpani, Atshaya Lily Yokarasa, Chiedza Makamanzi, Polyna Antoniou, Nikolaos Spernovasilis, and Constantinos Tsioutis. 2024. "Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations" Tropical Medicine and Infectious Disease 9, no. 10: 228. https://doi.org/10.3390/tropicalmed9100228
APA StyleSarantopoulos, A., Mastori Kourmpani, C., Yokarasa, A. L., Makamanzi, C., Antoniou, P., Spernovasilis, N., & Tsioutis, C. (2024). Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations. Tropical Medicine and Infectious Disease, 9(10), 228. https://doi.org/10.3390/tropicalmed9100228