Analysis of Factors Influencing the Clinical Severity of Omicron and Delta Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Vaccination and Clinical Outcome Definition
2.3. Statistical Analysis
3. Results
3.1. Epidemiology Characteristics
3.2. Logistic Regression Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Berger, N.A.; Kaelber, D.C.; Davis, P.B.; Volkow, N.D.; Xu, R. Incidence Rates and Clinical Outcomes of SARS-CoV-2 Infection with the Omicron and Delta Variants in Children Younger Than 5 Years in the US. JAMA Pediatr. 2022, 176, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Bager, P.; Wohlfahrt, J.; Bhatt, S.; Stegger, M.; Legarth, R.; Møller, C.H.; Skov, R.L.; Valentiner-Branth, P.; Voldstedlund, M.; Fischer, T.K.; et al. Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: An observational cohort study. Lancet Infect. Dis. 2022, 22, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.A.; Dargham, S.R.; Tang, P.; Chemaitelly, H.; Hasan, M.R.; Coyle, P.V.; Kaleeckal, A.H.; Latif, A.N.; Loka, S.; Shaik, R.M.; et al. COVID-19 disease severity in persons infected with the Omicron variant compared with the Delta variant in Qatar. J. Glob. Health 2022, 12, 5032. [Google Scholar] [CrossRef]
- Li, H.; Zhu, X.; Yu, R.; Qian, X.; Huang, Y.; Chen, X.; Lin, H.; Zheng, H.; Zhang, Y.; Lin, J.; et al. The effects of vaccination on the disease severity and factors for viral clearance and hospitalization in Omicron-infected patients: A retrospective observational cohort study from recent regional outbreaks in China. Front. Cell Infect. Microbiol. 2022, 12, 988694. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Li, M.; Xie, B.; He, L.; Wang, M.; Zhang, R.; Hou, N.; Zhang, Y.; Jia, F. Real-Word Effectiveness of Global COVID-19 Vaccines Against SARS-CoV-2 Variants: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 820544. [Google Scholar] [CrossRef]
- World Health Organization. Weekly Epidemiological Update on COVID-19–30 November 2021 [EB/OL]. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---30-november-2021 (accessed on 21 March 2023).
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- Mefsin, Y.M.; Chen, D.; Bond, H.S.; Lin, Y.; Cheung, J.K.; Wong, J.Y.; Ali, S.T.; Lau, E.H.Y.; Wu, P.; Leung, G.M.; et al. Epidemiology of Infections with SARS-CoV-2 Omicron BA.2 Variant, Hong Kong, January–March 2022. Emerg. Infect Dis. 2022, 28, 1856–1858. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, X.; Fang, L.; Sun, K.; Wu, Y.; Che, T.; Zou, J.; Cai, J.; Liu, H.; Wang, Y.; et al. Epidemiological characteristics, and transmission dynamics of the outbreak caused by the SARS-CoV-2 Omicron variant in Shanghai, China: A descriptive study. Lancet Reg. Health-West. Pac. 2022, 29, 100592. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhang, M.; Deng, A.; Zhang, Y.; Li, B.; Li, Y.; Kang, M. Comparison of Omicron and Delta Variant Infection COVID-19 Cases—Guangdong Province, China, 2022. China CDC Wkly. 2022, 4, 385–388. [Google Scholar] [PubMed]
- Li, M.; Liu, Q.; Wu, D.; Tang, L.; Wang, X.; Yan, T.; An, Z.; Yin, Z.; Gao, G.F.; Wang, F.; et al. Association of COVID-19 Vaccination and Clinical Severity of Patients Infected with Delta or Omicron Variants—China, 21 May 2021–28 February 2022. China CDC Wkly. 2022, 4, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Collie, S.; Champion, J.; Moultrie, H.; Bekker, L.G.; Gray, G. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N. Engl. J. Med. 2022, 386, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Li, X.N.; Huang, Y.; Wang, W.; Jing, Q.L.; Zhang, C.H.; Qin, P.Z.; Guan, W.J.; Gan, L.; Li, Y.L.; Liu, W.H.; et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. Emerg. Microbes Infect. 2021, 10, 1751–1759. [Google Scholar] [CrossRef]
- Xu, H.; Li, H.; You, H.; Zhang, P.; Li, N.; Jiang, N.; Cao, Y.; Qin, L.; Qin, G.; Qu, H.; et al. Effectiveness of inactivated COVID-19 vaccines against mild disease, pneumonia, and severe disease among persons infected with SARS-CoV-2 Omicron variant: Real-world study in Jilin Province, China. Emerg. Microbes Infect. 2023, 12, 2149935. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission of China. Diagnosis and Treatment of COVID-19 in China (Revised Version of Edition 8) [EB/OL]. Available online: http://www.nhc.gov.cn/xcs/zhengcwj/202104/7de0b3837c8b4606a0594aeb0105232b.shtml (accessed on 21 March 2023).
- National Health Commission of China. Diagnosis and Treatment of COVID-19 in China (Revised Version of Edition 9) [EB/OL]. Available online: http://www.nhc.gov.cn/yzygj/s7653p/202203/b74ade1ba4494583805a3d2e40093d88.shtml (accessed on 6 April 2023).
- National Health Commission of China. Protocol for Prevention and Control of COVID-19 in China (Edition10). [EB/OL]. Available online: http://www.nhc.gov.cn/xcs/zhengcwj/202301/bdc1ff75feb94934ae1dade176d30936.shtml (accessed on 6 April 2023).
- Shang, W.; Kang, L.; Cao, G.; Wang, Y.; Gao, P.; Liu, J.; Liu, M. Percentage of Asymptomatic Infections among SARS-CoV-2 Omicron Variant-Positive Individuals: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1049. [Google Scholar] [CrossRef] [PubMed]
- Wrenn, J.O.; Pakala, S.B.; Vestal, G.; Shilts, M.H.; Brown, H.M.; Bowen, S.M.; Strickland, B.A.; Williams, T.; Mallal, S.A.; Jones, I.D.; et al. COVID-19 severity from Omicron and Delta SARS-CoV-2 variants. Influenza Other Respir. Viruses 2022, 16, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Deng, X.; Yang, J.; Sun, K.; Liu, H.; Chen, Z.; Peng, C.; Chen, X.; Wu, Q.; Zou, J.; et al. Modeling transmission of SARS-CoV-2 Omicron in China. Nat. Med. 2022, 28, 1468–1475. [Google Scholar] [CrossRef]
- Jassat, W.; Abdool Karim, S.S.; Ozougwu, L.; Welch, R.; Mudara, C.; Masha, M.; Rousseau, P.; Wolmarans, M.; Selikow, A.; Govender, N.; et al. Trends in Cases, Hospitalization and Mortality Related to the Omicron BA.4/BA.5 Sub-Variants in South Africa. Clin Infect. Dis. 2022, 76, 1468–1475. [Google Scholar] [CrossRef]
- Cloete, J.; Kruger, A.; Masha, M.; du Plessis, N.M.; Mawela, D.; Tshukudu, M.; Manyane, T.; Komane, L.; Venter, M.; Jassat, W.; et al. Paediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 omicron (B.1.1.529) variant wave in South Africa: A multicentre observational study. Lancet Child Adolesc. Health 2022, 6, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Qie, G.; Yao, Q.; Sun, W.; Wang, C.; Zhang, Z.; Wang, X.; Wang, P.; Jiang, J.; Bai, X.; et al. Sex Differences on Clinical Characteristics, Severity, and Mortality in Adult Patients With COVID-19: A Multicentre Retrospective Study. Front. Med. 2021, 8, 607059. [Google Scholar] [CrossRef] [PubMed]
- Bechmann, N.; Barthel, A.; Schedl, A.; Herzig, S.; Varga, Z.; Gebhard, C.; Mayr, M.; Hantel, C.; Beuschlein, F.; Wolfrum, C.; et al. Sexual dimorphism in COVID-19: Potential clinical and public health implications. Lancet Diabetes Endocrinol. 2022, 10, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- Viveiros, A.; Rasmuson, J.; Vu, J.; Mulvagh, S.L.; Yip, C.Y.Y.; Norris, C.M.; Oudit, G.Y. Sex differences in COVID-19: Candidate pathways, genetics of ACE2, and sex hormones. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H296–H304. [Google Scholar] [CrossRef]
- Graff, K.; Smith, C.; Silveira, L.; Jung, S.; Curran-Hays, S.; Jarjour, J.; Carpenter, L.; Pickard, K.; Mattiucci, M.; Fresia, J.; et al. Risk Factors for Severe COVID-19 in Children. Pediatr. Infect. Dis. J. 2021, 40, e137–e145. [Google Scholar] [CrossRef]
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Calò Carducci, F.I.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc. Health 2020, 4, 653–661. [Google Scholar] [CrossRef]
- Preston, L.E.; Chevinsky, J.R.; Kompaniyets, L.; Lavery, A.M.; Kimball, A.; Boehmer, T.K.; Goodman, A.B. Characteristics and Disease Severity of US Children and Adolescents Diagnosed With COVID-19. JAMA Netw. Open 2021, 4, e215298. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; O’Brien, K.L.; Madhi, S.A.; Widdowson, M.A.; Byass, P.; Omer, S.B.; Abbas, Q.; Ali, A.; Amu, A.; et al. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health 2020, 8, e497–e510. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.T.; Leung, K.; Bushman, M.; Kishore, N.; Niehus, R.; de Salazar, P.M.; Cowling, B.J.; Lipsitch, M.; Leung, G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020, 26, 506–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2021, 93, 1449–1458. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Chodick, G.; Tene, L.; Rotem, R.S.; Patalon, T.; Gazit, S.; Ben-Tov, A.; Weil, C.; Goldshtein, I.; Twig, G.; Cohen, D.; et al. The Effectiveness of the Two-Dose BNT162b2 Vaccine: Analysis of Real-World Data. Clin Infect. Dis. 2022, 74, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Gao, L.; Tao, L.; Hadinegoro, S.R.; Erkin, M.; Ying, Z.; He, P.; Girsang, R.T.; Vergara, H.; Akram, J.; et al. Efficacy and Safety of the RBD-Dimer-Based Covid-19 Vaccine ZF2001 in Adults. N. Engl. J. Med. 2022, 386, 2097–2111. [Google Scholar] [CrossRef]
- Cao, Y.; Hao, X.; Wang, X.; Wu, Q.; Song, R.; Zhao, D.; Song, W.; Wang, Y.; Yisimayi, A.; Wang, W.; et al. Humoral immunogenicity and reactogenicity of CoronaVac or ZF2001 booster after two doses of inactivated vaccine. Cell Res. 2022, 32, 107–109. [Google Scholar] [CrossRef]
- Botton, J.; Dray-Spira, R.; Baricault, B.; Drouin, J.; Bertrand, M.; Jabagi, M.J.; Weill, A.; Zureik, M. Reduced risk of severe COVID-19 in more than 1.4 million elderly people aged 75 years and older vaccinated with mRNA-based vaccines. Vaccine 2022, 40, 414–417. [Google Scholar] [CrossRef]
- Matrajt, L.; Eaton, J.; Leung, T.; Brown, E.R. Vaccine optimization for COVID-19: Who to vaccinate first? Sci. Adv. 2020, 7, eabf1374. [Google Scholar] [CrossRef]
- Moore, S.; Hill, E.M.; Dyson, L.; Tildesley, M.J.; Keeling, M.J. Modelling optimal vaccination strategy for SARS-CoV-2 in the UK. PLoS Comput. Biol. 2021, 17, e1008849. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Niu, Y.; Luo, L.; Hu, Q.Q.; Yang, T.L.; Chu, M.J.; Chen, Q.P.; Lei, Z.; Rui, J.; Song, C.L.; et al. The optimal vaccination strategy to control COVID-19: A modeling study in Wuhan City, China. Infect Dis. Poverty 2021, 10, 140. [Google Scholar] [CrossRef] [PubMed]
Factors | COVID-19 Infection | Pneumonia | Severe Illness | |||
---|---|---|---|---|---|---|
Omicron (%) | Delta (%) | Omicron (%) | Delta (%) | Omicron (%) | Delta (%) | |
Vaccination history | ||||||
Unvaccinated | 273 (0.5) | 60 (44.8) | 192 (0.8) | 37 (41.6) | 75 (2.9) | 5 (83.3) |
Partially | 4813 (8.0) | 31 (23.1) | 2572 (11.1) | 25 (28.1) | 423 (16.2) | 0 (0) |
Fully | 23,594 (39.0) | 43 (32.1) | 8506 (36.8) | 27 (30.3) | 999 (38.2) | 1 (16.7) |
Booster | 31,854 (52.6) | 0 (0) | 11,837 (51.2) | 0 (0) | 1120 (42.8) | 0 (0) |
Sex | ||||||
Male | 31,821 (52.6) | 62 (46.3) | 13,144 (56.9) | 39 (43.8) | 1798 (68.7) | 2 (33.3) |
Female | 28,713 (47.4) | 72 (53.7) | 9963 (43.1) | 50 (56.2) | 819 (31.3) | 4 (66.7) |
Age group | ||||||
<3 | 288 (0.5) | 0 (0) | 50 (0.2) | 0 (0) | 4 (0.2) | 0 (0) |
3–17 | 4432 (7.3) | 38 (28.4) | 363 (1.6) | 19 (21.3) | 16 (0.6) | 0 (0) |
18–59 | 18,704 (30.9) | 85 (63.4) | 4608 (19.9) | 62 (69.7) | 261 (10) | 4 (66.7) |
≥60 | 37,110 (61.3) | 11 (8.2) | 18,086 (78.3) | 8 (9.0) | 2336 (89.3) | 2 (33.3) |
Total | 60,534 (100) | 134 (100) | 23,107 (100) | 89 (100) | 2617 (100) | 6 (100) |
Factors | Case Number | Pneumonia | Severe Illness | ||||
---|---|---|---|---|---|---|---|
n (%) | p | OR (95% CI) | n (%) | p | OR (95% CI) | ||
Variant | |||||||
Delta | 134 | 89 (66.4) | 1 (Ref) | 6(4.5) | 1 (Ref) | ||
Omicron | 60,534 | 23,107 (38.2) | <0.0001 | 0.21 (0.14–0.31) | 2617(4.3) | 0.911 | 1.05 (0.43–2.57) |
Vaccination history | <0.0001 | <0.0001 | |||||
Unvaccinated | 333 | 229 (68.8) | 1 (Ref) | 80 (24) | 1 (Ref) | ||
Partially | 4844 | 2597 (53.6) | <0.0001 | 0.52 (0.40–0.67) | 423 (8.7) | <0.0001 | 0.26 (0.19–0.34) |
Fully | 23,637 | 8533 (36.1) | <0.0001 | 0.37 (0.29–0.47) | 1000 (4.2) | <0.0001 | 0.16 (0.12–0.22) |
Booster | 31,854 | 11,837 (37.2) | <0.0001 | 0.30 (0.23–0.39) | 1120 (3.5) | <0.0001 | 0.11 (0.09–0.15) |
Sex | |||||||
Male | 31,883 | 13,183 (41.3) | 1 (Ref) | 1800 (5.6) | 1 (Ref) | ||
Female | 28,785 | 10,013 (34.8) | <0.0001 | 0.82 (0.79–0.85) | 823 (2.9) | <0.0001 | 0.54 (0.5–0.59) |
Age group | <0.0001 | ||||||
<3 | 288 | 50 (17.4) | 1 (Ref) | 4 (1.4) | 1 (Ref) | ||
3–17 | 4470 | 382 (8.5) | <0.0001 | 0.4 (0.29–0.55) | 16 (0.4) | 0.009 | 0.23 (0.08–0.69) |
18–59 | 18,789 | 4670 (24.9) | 0.001 | 1.67 (1.23–2.28) | 265 (1.4) | 0.689 | 1.23 (0.45–3.34) |
≥60 | 37,121 | 18,094 (48.7) | <0.0001 | 4.58 (3.36–6.22) | 2338 (6.3) | 0.002 | 4.95 (1.83–13.39) |
Vaccine Type | Vaccination History | Case Number | Pneumonia | Severe Illness | ||||
---|---|---|---|---|---|---|---|---|
n (%) | p | OR (95% CI) | n (%) | p | OR (95% CI) | |||
Inactivated vaccine | Vaccination history | <0.0001 | <0.0001 | |||||
Unvaccinated | 333 | 229 (68.8) | 1 (Ref) | 80 (24.0) | 1 (Ref) | |||
Partially | 2126 | 1094 (51.5) | <0.0001 | 0.53 (0.41–0.69) | 177 (8.3) | <0.0001 | 0.26 (0.19–0.36) | |
Fully | 11,274 | 3324 (29.5) | <0.0001 | 0.37 (0.29–0.48) | 425 (3.8) | <0.0001 | 0.19 (0.14–0.25) | |
Booster | 31,436 | 11,660 (37.1) | <0.0001 | 0.31 (0.24–0.39) | 1102 (3.5) | <0.0001 | 0.11 (0.09–0.15) | |
Adenovirus vector vaccine | Vaccination history | <0.0001 | <0.0001 | |||||
Unvaccinated | 333 | 229 (68.8) | 1 (Ref) | 80 (24) | 1 (Ref) | |||
Partially | 15 | 11 (73.3) | 0.99 | 0.99 (0.3–3.27) | 2 (13.3) | 0.201 | 0.37 (0.08–1.7) | |
Fully | 608 | 346 (56.9) | <0.0001 | 0.48 (0.35–0.65) | 58 (9.5) | <0.0001 | 0.28 (0.19–0.41) | |
Booster | 249 | 106 (42.6) | <0.0001 | 0.36 (0.24–0.52) | 14 (5.6) | <0.0001 | 0.16 (0.09–0.29) | |
Recombinant subunit vaccine | Vaccination history | <0.0001 | <0.0001 | |||||
Unvaccinated | 333 | 229 (68.8) | 1 (Ref) | 80 (24) | 1 (Ref) | |||
Partially | 2703 | 1492 (55.2) | <0.0001 | 0.49 (0.37–0.65) | 244 (9) | <0.0001 | 0.26 (0.19–0.35) | |
Fully | 11,755 | 4863 (41.4) | <0.0001 | 0.34 (0.26–0.44) | 517 (4.4) | <0.0001 | 0.14 (0.11–0.19) | |
Booster | 169 | 71 (42) | <0.0001 | 0.29 (0.2–0.44) | 4 (2.4) | <0.0001 | 0.06 (0.02–0.17) |
Variant | Age Group | Vaccination History | Case Number | Pneumonia | Severe Illness | ||||
---|---|---|---|---|---|---|---|---|---|
n (%) | p | OR (95% CI) | n (%) | p | OR (95% CI) | ||||
Delta | 3–17 | Unvaccinated | 38 | 19 (50.0) | Ref | 0 (0) | Ref | ||
Partially | 0 | 0 (0) | - | - | 0 (0) | - | - | ||
Fully | 0 | 0 (0) | - | - | 0 (0) | - | - | ||
Total | 38 | 19 (50.0) | 0 (0) | ||||||
18–59 | Unvaccinated | 13 | 11 (84.6) | 0.208 | Ref | 3 (23.1) | 0.113 | Ref | |
Partially | 30 | 30 (100) | 0.727 | 0.73 (0.13–4.24) | 0 (0) | 0.998 | 0 | ||
Fully | 42 | 21 (50.0) | 0.181 | 0.33 (0.06–1.69) | 1 (2.4) | 0.037 | 0.08 (0.01–0.85) | ||
Total | 85 | 62 (72.9) | 4 (4.7) | ||||||
≥60 | Unvaccinated | 9 | 7 (87.5) | 1 | Ref | 2 (22.2) | 1 | Ref | |
Partially | 1 | 1 (100) | 1 | - | 0 (0) | 1 | - | ||
Fully | 1 | 0 (0) | 1 | - | 0 (0) | 1 | - | ||
Total | 11 | 8 (72.7) | 2 (18.2) | ||||||
Omicron | 3–17 | Unvaccinated | 2 | 0 (0) | 0.66 | Ref | 0 (0) | 1 | Ref |
Partially | 134 | 15 (4.1) | 0.999 | - | 0 (0) | 1 | - | ||
Fully | 4202 | 340 (93.7) | 0.999 | - | 16 (100) | 1 | - | ||
Booster | 94 | 8 (2.2) | 0.999 | - | 0 (0) | 1 | - | ||
Total | 4432 | 361 (8.1) | 16 (0.4) | ||||||
18–59 | Unvaccinated | 28 | 16 (0.3) | <0.0001 | Ref | 12 (4.6) | <0.0001 | Ref | |
Partially | 746 | 244 (5.3) | 0.009 | 0.36 (0.17–0.78) | 29 (11.1) | <0.0001 | 0.05 (0.02–0.11) | ||
Fully | 6608 | 1721 (37.3) | 0.001 | 0.26 (0.13–0.56) | 99 (37.9) | <0.0001 | 0.02 (0.01–0.04) | ||
Booster | 11,322 | 2627 (57) | <0.0001 | 0.23 (0.11–0.48) | 121 (46.4) | <0.0001 | 0.01 (0.01–0.03) | ||
Total | 18,704 | 4608 (24.6) | 261 (1.4) | ||||||
≥60 | Unvaccinated | 235 | 172 (1) | <0.0001 | Ref | 60 (2.6) | <0.0001 | Ref | |
Partially | 3913 | 2309 (12.8) | <0.0001 | 0.53 (0.39–0.71) | 394 (16.9) | <0.0001 | 0.33 (0.24–0.45) | ||
Fully | 12,667 | 6427 (35.5) | <0.0001 | 0.38 (0.28–0.5) | 883 (37.8) | <0.0001 | 0.22 (0.16–0.29) | ||
Booster | 20,295 | 9178 (50.7) | <0.0001 | 0.3 (0.23–0.4) | 999 (42.8) | <0.0001 | 0.15 (0.11–0.2) | ||
Total | 37,110 | 18,086 (48.7) | 2336 (6.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Luo, K.; Guo, Y.; Fang, M.; Sun, Q.; Dai, Z.; Yang, H.; Zhan, Z.; Hu, S.; Chen, T.; et al. Analysis of Factors Influencing the Clinical Severity of Omicron and Delta Variants. Trop. Med. Infect. Dis. 2023, 8, 330. https://doi.org/10.3390/tropicalmed8060330
Zhao S, Luo K, Guo Y, Fang M, Sun Q, Dai Z, Yang H, Zhan Z, Hu S, Chen T, et al. Analysis of Factors Influencing the Clinical Severity of Omicron and Delta Variants. Tropical Medicine and Infectious Disease. 2023; 8(6):330. https://doi.org/10.3390/tropicalmed8060330
Chicago/Turabian StyleZhao, Shanlu, Kaiwei Luo, Yichao Guo, Mingli Fang, Qianlai Sun, Zhihui Dai, Hao Yang, Zhifei Zhan, Shixiong Hu, Tianmu Chen, and et al. 2023. "Analysis of Factors Influencing the Clinical Severity of Omicron and Delta Variants" Tropical Medicine and Infectious Disease 8, no. 6: 330. https://doi.org/10.3390/tropicalmed8060330
APA StyleZhao, S., Luo, K., Guo, Y., Fang, M., Sun, Q., Dai, Z., Yang, H., Zhan, Z., Hu, S., Chen, T., & Li, X. (2023). Analysis of Factors Influencing the Clinical Severity of Omicron and Delta Variants. Tropical Medicine and Infectious Disease, 8(6), 330. https://doi.org/10.3390/tropicalmed8060330