Emergence of Arboviruses in the United States: The Boom and Bust of Funding, Innovation, and Capacity
Abstract
:1. Introduction
2. Arbovirus Emergence in the U.S.
3. Federal Funding and Publications in Response to Arboviral Emergence
4. Innovation of Mosquito Surveillance Tools
4.1. Culex-Borne Virus Surveillance
4.2. Aedes-Borne Virus Surveillance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houlihan, C.F.; Whitworth, J.A. Outbreak science: Recent progress in the detection and response to outbreaks of infectious diseases. Clin. Med. 2019, 19, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Jayabalisingham, B.; Hessen, M.; James, C. Infectious Disease Outbreak Research: Insights and Trends 2020 [Webinar] In Scopus Webinar Series. Available online: https://www.brighttalk.com/webcast/13703/391874. (accessed on 1 April 2020).
- Pavlin, J.A.; Mostashari, F.; Kortepeter, M.G.; Hynes, N.A.; Chotani, R.A.; Mikol, Y.B.; Ryan, M.A.K.; Neville, J.S.; Gantz, D.T.; Writer, J.V.; et al. Innovative Surveillance Methods for Rapid Detection of Disease Outbreaks and Bioterrorism: Results of an Interagency Workshop on Health Indicator Surveillance. Am. J. Public Health 2003, 93, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- USAID. Fighting Ebola: A Grand Challenge for Development. Available online: http://www.ebolagrandchallenge.net (accessed on 7 April 2020).
- USAID. Combating Zika | Grand Challenge for Development | U.S. Agency for International Development. Available online: https://www.usaid.gov/grandchallenges/zika (accessed on 25 April 2020).
- Bashir, N. James Dyson Designed a New Ventilator in 10 days. He’s Making 15,000 for the Pandemic Fight. Available online: https://www.cnn.com/2020/03/26/tech/dyson-ventilators-coronavirus/index.html (accessed on 7 April 2020).
- Bhatt, K.; Pourmand, A.; Sikka, N. Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine. Telemed. E-Health 2018, 24, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Roblin, S. Will Blood-Bearing Delivery Drones Transform Disaster Relief and Battlefield Medicine? Available online: https://www.forbes.com/sites/sebastienroblin/2019/10/22/will-blood-bearing-delivery-drones--transform-disaster-relief-and-battlefield-medicine/ (accessed on 7 April 2020).
- Shapiro, G. How Innovation Is Helping Mitigate the Coronavirus Threat; STAT: Boston, MA, USA, 2020. [Google Scholar]
- Ramírez, A.; Meyer, D.; Ritchie, S. Searching for the proverbial needle in a haystack: Advances in mosquito-borne arbovirus surveillance. Parasit. Vectors 2018, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohnstaedt, L.; Ladner, J.; Campbell, L.; Busch, N.; Barrera, R. Determining Mosquito Distribution from Egg Data: The Role of the Citizen Scientist. Am. Biol. Teach. 2016, 78, 317–322. [Google Scholar] [CrossRef]
- Esperança, P.M.; Blagborough, A.M.; Da, D.F.; Dowell, F.E.; Churcher, T.S. Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy. Parasit. Vectors 2018, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.N.; Dos Santos, L.M.B.; Chouin-Carneiro, T.; Pavan, M.G.; Garcia, G.A.; David, M.R.; Beier, J.C.; Dowell, F.E.; Maciel-De-Freitas, R.; Sikulu-Lord, M.T. Rapid, noninvasive detection of Zika virus in mosquitoes by near-infrared spectroscopy. Sci. Adv. 2018, 4, eaat0496. [Google Scholar] [CrossRef] [Green Version]
- Norris, D.; Ray, A.; Guda, T.; Keogh, E.; Singh, S.; Zhu, Y.; Debboun, M.; Reyna, M.; Vigilant, M.; Carpi, G.; et al. Project premonition project: Field trials of a robotic smart trap for mosquito identification and bionomics. Am. J. Trop. Med. Hyg. 2017, 97, 610–611. [Google Scholar]
- Curren, E.J.; Lehman, J.; Kolsin, J.; Walker, W.L.; Martin, S.W.; Staples, J.E.; Hills, S.L.; Gould, C.V.; Rabe, I.B.; Fischer, M.; et al. West Nile Virus and Other Nationally Notifiable Arboviral Diseases—United States, 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1137–1142. [Google Scholar] [CrossRef]
- Gaensbauer, J.T.; Lindsey, N.P.; Messacar, K.; Staples, J.E.; Fischer, M. Neuroinvasive arboviral disease in the United States: 2003 to 2012. Pediatrics 2014, 134, e642–e650. [Google Scholar] [CrossRef] [Green Version]
- Krow-Lucal, E.R.; Lindsey, N.P.; Fischer, M.; Hills, S.L. Powassan Virus Disease in the United States, 2006–2016. Vector Borne Zoonotic Dis. 2018, 18, 286–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastula, D.M.; Hoang Johnson, D.K.; White, J.L.; Dupuis, A.P.; Fischer, M.; Staples, J.E. Jamestown Canyon Virus Disease in the United States-2000–2013. Am. J. Trop. Med. Hyg. 2015, 93, 384–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsey, N.P.; Martin, S.W.; Staples, J.E.; Fischer, M. Notes from the Field: Multistate Outbreak of Eastern Equine Encephalitis Virus—United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 50–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.; Gallagher, K.; Jajosky, R.A.; Ward, J.; Sharp, P.; Anderson, W.; Abellera, J.; Aranas, A.; Mayes, M.; Wodajo, M.; et al. Summary of Notifiable Diseases—United States, 2010. Morb. Mortal. Wkly. Rep. 2010, 59, 1–111. [Google Scholar]
- Robb, L.L.; Hartman, D.A.; Rice, L.; deMaria, J.; Bergren, N.A.; Borland, E.M.; Kading, R.C. Continued Evidence of Decline in the Enzootic Activity of Western Equine Encephalitis Virus in Colorado. J. Med. Entomol. 2019, 56, 584–588. [Google Scholar] [CrossRef]
- Fischer, M.; Staples, J.E. Arboviral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, CDC Notes from the field: Chikungunya virus spreads in the Americas—Caribbean and South America, 2013–2014. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 500–501. [Google Scholar]
- Zanluca, C.; de Melo, V.C.A.; Mosimann, A.L.P.; Santos, G.I.V.D.; Santos, C.N.D.D.; Luz, K. First report of autochthonous transmission of Zika virus in Brazil. Mem. Inst. Oswaldo Cruz 2015, 110, 569–572. [Google Scholar] [CrossRef]
- Balmaseda, A.; Standish, K.; Mercado, J.C.; Matute, J.C.; Tellez, Y.; Saborío, S.; Hammond, S.N.; Nuñez, A.; Avilés, W.; Henn, M.R.; et al. Trends in patterns of dengue transmission over 4 years in a pediatric cohort study in Nicaragua. J. Infect. Dis. 2010, 201, 5–14. [Google Scholar] [CrossRef]
- Brathwaite, D.O.; San Martín, J.L.; Montoya, R.H.; del Diego, J.; Zambrano, B.; Dayan, G.H. The history of dengue outbreaks in the Americas. Am. J. Trop. Med. Hyg. 2012, 87, 584–593. [Google Scholar] [CrossRef] [Green Version]
- Salles, T.S.; da Encarnação Sá-Guimarães, T.; de Alvarenga, E.S.L.; Guimarães-Ribeiro, V.; de Meneses, M.D.F.; de Castro-Salles, P.F.; Dos Santos, C.R.; do Amaral Melo, A.C.; Soares, M.R.; Ferreira, D.F.; et al. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: A review. Parasit. Vectors 2018, 11, 264. [Google Scholar] [CrossRef]
- PAHO. Number of Reported Cases of Dengue and Dengue Hemorrhagic Fever (DHF), Region of the Americas (by Country and Subregion) 1980–2018. Available online: https://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html (accessed on 7 April 2020).
- Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Pless, E.; Gloria-Soria, A.; Evans, B.R.; Kramer, V.; Bolling, B.G.; Tabachnick, W.J.; Powell, J.R. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl. Trop. Dis. 2017, 11, e0005718. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, L.A.; Fox, S.J.; Chen, X.; Liu, K.; Bellan, S.E.; Dimitrov, N.B.; Galvani, A.P.; Meyers, L.A. Assessing real-time Zika risk in the United States. BMC Infect. Dis. 2017, 17, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florida State Health Department. Department of Health Daily Zika Update | Florida Department of Health. Available online: http://www.floridahealth.gov/newsroom/2017/01/012717-zika-update.html (accessed on 18 April 2020).
- Kaplan, S. Congress Approves $1.1 Billion in Zika Funding. Available online: https://www.scientificamerican.com/article/congress-approves-1-1-billion-in-zika-funding/ (accessed on 15 April 2020).
- MMWR. Assessing Capacity for Surveillance, Prevention, and Control of West Nile Virus Infection—United States, 1999 and 2004. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5506a2.htm (accessed on 15 April 2020).
- Hadler, J.; Patel, D.; Bradley, K.; Hughes, J.; Blackmore, C.; Etkind, P.; Kan, L.; Getchell, J.; Blumenstock, J.; Engel, J. National Capacity for Surveillance, Prevention, and Control of West Nile Virus and Other Arbovirus Infections—United States, 2004 and 2012. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 281–284. [Google Scholar]
- CDC. Statistics & Maps | West Nile Virus | CDC. Available online: https://www.cdc.gov/westnile/statsmaps/index.html (accessed on 18 April 2020).
- CDC. CDC Awards Nearly $184 Million to Continue the Fight against Zika. Available online: https://www.cdc.gov/media/releases/2016/p1222-zika-funding.html (accessed on 15 April 2020).
- CDC. ELC 5-year Focus, Funding, and Impact | DPEI | CDC. Available online: https://www.cdc.gov/ncezid/dpei/elc/history-of-elc.html (accessed on 25 April 2020).
- Rohe, D.L.; Fall, R.P. A miniature Battery Powered CO2 Baited Light Trap for Mosquito Borne Encephalitis Surveillance. Available online: https://eurekamag.com/research/000/583/000583985.php (accessed on 7 March 2019).
- Ritchie, S.A.; Cortis, G.; Paton, C.; Townsend, M.; Shroyer, D.; Zborowski, P.; Hall-Mendelin, S.; Van Den Hurk, A.F. A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J. Med. Entomol. 2013, 50, 185–194. [Google Scholar] [CrossRef]
- Meyer, D.B.; Johnson, B.J.; Fall, K.; Buhagiar, T.S.; Townsend, M.; Ritchie, S.A. Development, Optimization, and Field Evaluation of the Novel Collapsible Passive Trap for Collection of Mosquitoes. J. Med. Entomol. 2018, 55, 706–710. [Google Scholar] [CrossRef] [Green Version]
- Panella, N.A.; Crockett, R.J.K.; Biggerstaff, B.J.; Komar, N. The Centers for Disease Control and Prevention resting trap: A novel device for collecting resting mosquitoes. J. Am. Mosq. Control Assoc. 2011, 27, 323–325. [Google Scholar] [CrossRef] [Green Version]
- Service, M. Mosquito Ecology: Field Sampling Methods, 2nd ed.; Springer eBook Collection; Springer: Dordrecht, The Netherland, 1993; ISBN 978-94-015-8113-4. [Google Scholar]
- Maciel-de-Freitas, R.; Eiras, A.E.; Lourenço-de-Oliveira, R. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 2006, 101, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Eiras, A.E.; Buhagiar, T.S.; Ritchie, S.A. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 200–209. [Google Scholar] [CrossRef]
- Mackay, A.J.; Amador, M.; Barrera, R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasit. Vectors 2013, 6, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, P. A revised version of the CDC Gravid Mosquito Trap. J. Am. Mosq. Control Assoc. 1987, 3, 325–327. [Google Scholar] [PubMed]
- Vazquez-Prokopec, G.M.; Galvin, W.A.; Kelly, R.; Kitron, U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J. Med. Entomol. 2009, 46, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Kompas, T.; Chu, L.; Pham, V.H.; Spring, D. Budgeting and portfolio allocation for biosecurity measures—Kompas. Aust. J. Agric. Resour. Econ. 2019, 63, 412–438. [Google Scholar] [CrossRef]
- Kompas, T.; Che, T.N.; Ha, P.V.; Chu, L. Cost–Benefit Analysis for Biosecurity Decisions. In Invasive Species: Risk Assessment and Management; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kading, R.C.; Cohnstaedt, L.W.; Fall, K.; Hamer, G.L. Emergence of Arboviruses in the United States: The Boom and Bust of Funding, Innovation, and Capacity. Trop. Med. Infect. Dis. 2020, 5, 96. https://doi.org/10.3390/tropicalmed5020096
Kading RC, Cohnstaedt LW, Fall K, Hamer GL. Emergence of Arboviruses in the United States: The Boom and Bust of Funding, Innovation, and Capacity. Tropical Medicine and Infectious Disease. 2020; 5(2):96. https://doi.org/10.3390/tropicalmed5020096
Chicago/Turabian StyleKading, Rebekah C., Lee W. Cohnstaedt, Ken Fall, and Gabriel L. Hamer. 2020. "Emergence of Arboviruses in the United States: The Boom and Bust of Funding, Innovation, and Capacity" Tropical Medicine and Infectious Disease 5, no. 2: 96. https://doi.org/10.3390/tropicalmed5020096
APA StyleKading, R. C., Cohnstaedt, L. W., Fall, K., & Hamer, G. L. (2020). Emergence of Arboviruses in the United States: The Boom and Bust of Funding, Innovation, and Capacity. Tropical Medicine and Infectious Disease, 5(2), 96. https://doi.org/10.3390/tropicalmed5020096