A Devil of a Transmissible Cancer
Abstract
:Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poulin, R.; Morand, S. The Diversity of Parasites. Q. Rev. Biol. 2000, 75, 277–293. [Google Scholar] [CrossRef]
- Aktipis, C.A.; Boddy, A.M.; Jansen, G.; Hibner, U.; Hochberg, M.E.; Maley, C.C.; Wilkinson, G.S. Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [Green Version]
- Icard, P.; Lincet, H. [The cancer tumor: A metabolic parasite?]. Bull. Cancer 2013, 100, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuzarte-Luis, V.; Mota, M.M. Parasite Sensing of Host Nutrients and Environmental Cues. Cell Host Microbe 2018, 23, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmid, J.M.; Bettiol, S.S. Global Medicine, Parasites, and Tasmania. Trop. Med. Infect. Dis. 2020, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, C.E.; Baars, C.; Hesterman, H.; Hocking, G.J.; Jones, M.E.; Lazenby, B.; Mann, D.; Mooney, N.; Pemberton, D.; Pyecroft, S.; et al. Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol. Conserv. 2006, 131, 307–324. [Google Scholar] [CrossRef]
- Loh, R.; Bergfeld, J.; Hayes, D.; O’Hara, A.; Pyecroft, S.; Raidal, S.; Sharpe, R. The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Vet. Pathol. 2006, 43, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Loh, R.; Hayes, D.; Mahjoor, A.; O’Hara, A.; Pyecroft, S.; Raidal, S. The immunohistochemical characterization of devil facial tumor disease (DFTD) in the Tasmanian Devil (Sarcophilus harrisii). Vet. Pathol. 2006, 43, 896–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearse, A.M.; Swift, K. Allograft theory: Transmission of devil facial-tumor disease. Nature 2006, 439, 549. [Google Scholar] [CrossRef] [PubMed]
- Pye, R.J.; Pemberton, D.; Tovar, C.; Tubio, J.M.; Dun, K.A.; Fox, S.; Darby, J.; Hayes, D.; Knowles, G.W.; Kreiss, A.; et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 2016, 113, 374–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, G.M.; Thompson, R.; Beveridge, I.; Kelly, A. Parasite Encounters in the Wild. Available online: https://www.parasite.org.au/outreach/inspiring-australia/ (accessed on 20 November 2019).
- Ujvari, B.; Beckmann, C.; Biro, P.A.; Arnal, A.; Tasiemski, A.; Massol, F.; Salzet, M.; Mery, F.; Boidin-Wichlacz, C.; Misse, D.; et al. Cancer and life-history traits: Lessons from host-parasite interactions. Parasitology 2016, 143, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Ujvari, B.; Pearse, A.M.; Peck, S.; Harmsen, C.; Taylor, R.; Pyecroft, S.; Madsen, T.; Papenfuss, A.T.; Belov, K. Evolution of a contagious cancer: Epigenetic variation in devil facial tumor disease. Proc. Biol. Sci. 2013, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. About Parasites. Available online: https://www.cdc.gov/parasites/about.html (accessed on 19 November 2019).
- Gardai, S.J.; McPhillips, K.A.; Frasch, S.C.; Janssen, W.J.; Starefeldt, A.; Murphy-Ullrich, J.E.; Bratton, D.L.; Oldenborg, P.A.; Michalak, M.; Henson, P.M. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005, 123, 321–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamede, R.K.; McCallum, H.; Jones, M.E. Seasonal, demographic and density-related patterns of contact between Tasmanian devils (Sarcophilus harrisii): Implications for transmission of devil facial tumor disease. Austral Ecol. 2008, 33, 614–622. [Google Scholar] [CrossRef]
- Wells, K.; Hamede, R.K.; Kerlin, D.H.; Storfer, A.; Hohenlohe, P.A.; Jones, M.E.; McCallum, H.I. Infection of the fittest: Devil facial tumor disease has greatest effect on individuals with highest reproductive output. Ecol. Lett. 2017, 20, 770–778. [Google Scholar] [CrossRef]
- Laurent, F.; Lacroix-Lamande, S. Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium. Int. J. Parasitol. 2017, 47, 711–721. [Google Scholar] [CrossRef]
- Hamede, R.K.; McCallum, H.; Jones, M. Biting injuries and transmission of Tasmanian devil facial tumor disease. J. Anim. Ecol. 2013, 82, 182–190. [Google Scholar] [CrossRef]
- Fooks, A.R.; Banyard, A.C.; Horton, D.L.; Johnson, N.; McElhinney, L.M.; Jackson, A.C. Current status of rabies and prospects for elimination. Lancet 2014, 384, 1389–1399. [Google Scholar] [CrossRef]
- Meibalan, E.; Marti, M. Biology of Malaria Transmission. Cold Spring Harb. Perspect. Med. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Bates, P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 2007, 37, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Lazenby, B.T.; Tobler, M.W.; Brown, W.E.; Hawkins, C.E.; Hocking, G.J.; Hume, F.; Huxtable, S.; Iles, P.; Jones, M.E.; Lawrence, C.; et al. Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. J. Appl. Ecol. 2018, 55, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- McCallum, H.; Tompkins, D.M.; Jones, M.; Lachish, S.; Marvanek, S.; Lazenby, B.; Hocking, G.; Wiersma, J.; Hawkins, C.E. Distribution and impacts of Tasmanian devil facial tumor disease. Ecohealth 2007, 4, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Hamede, R.K.; Lachish, S.; Belov, K.; Woods, G.; Kreiss, A.; Pearse, A.M.; Lazenby, B.; Jones, M.; McCallum, H. Reduced effect of Tasmanian devil facial tumor disease at the disease front. Conserv. Biol. 2012, 26, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Vannier-Santos, M.A.; Lenzi, H.L. Parasites or cohabitants: Cruel omnipresent usurpers or creative “eminences grises”? J. Parasitol. Res. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Pye, R.J.; Hamede, R.; Siddle, H.V.; Caldwell, A.; Knowles, G.W.; Swift, K.; Kreiss, A.; Jones, M.E.; Lyons, A.B.; Woods, G.M. Demonstration of immune responses against devil facial tumor disease in wild Tasmanian devils. Biol. Lett. 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Epstein, B.; Jones, M.; Hamede, R.; Hendricks, S.; McCallum, H.; Murchison, E.P.; Schonfeld, B.; Wiench, C.; Hohenlohe, P.; Storfer, A. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Wells, K.; Hamede, R.K.; Jones, M.E.; Hohenlohe, P.A.; Storfer, A.; McCallum, H.I. Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease. Ecology 2019, 100, e02613. [Google Scholar] [CrossRef] [Green Version]
- Deakin, J.E.; Papenfuss, A.T.; Belov, K.; Cross, J.G.; Coggill, P.; Palmer, S.; Sims, S.; Speed, T.P.; Beck, S.; Graves, J.A. Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genom. 2006, 7, 281. [Google Scholar] [CrossRef] [Green Version]
- Deakin, J.E.; Bender, H.S.; Pearse, A.M.; Rens, W.; O’Brien, P.C.; Ferguson-Smith, M.A.; Cheng, Y.; Morris, K.; Taylor, R.; Stuart, A.; et al. Genomic restructuring in the Tasmanian devil facial tumor: Chromosome painting and gene mapping provide clues to evolution of a transmissible tumor. PLoS Genet. 2012, 8, e1002483. [Google Scholar] [CrossRef]
- Murchison, E.P.; Schulz-Trieglaff, O.B.; Ning, Z.; Alexandrov, L.B.; Bauer, M.J.; Fu, B.; Hims, M.; Ding, Z.; Ivakhno, S.; Stewart, C.; et al. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 2012, 148, 780–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddle, H.V.; Kreiss, A.; Eldridge, M.D.; Noonan, E.; Clarke, C.J.; Pyecroft, S.; Woods, G.M.; Belov, K. Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc. Natl. Acad. Sci. USA 2007, 104, 16221–16226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, W.; Hayes, V.M.; Ratan, A.; Petersen, D.C.; Wittekindt, N.E.; Miller, J.; Walenz, B.; Knight, J.; Qi, J.; Zhao, F.; et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc. Natl. Acad. Sci. USA 2011, 108, 12348–12353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stammnitz, M.R.; Coorens, T.H.H.; Gori, K.C.; Hayes, D.; Fu, B.; Wang, J.; Martin-Herranz, D.E.; Alexandrov, L.B.; Baez-Ortega, A.; Barthorpe, S.; et al. The origins and vulnerabilities of two transmissible cancers in Tasmanian devils. Cancer Cell 2018, 33, 607–619.e615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreiss, A.; Brown, G.K.; Tovar, C.; Lyons, A.B.; Woods, G.M. Evidence for induction of humoral and cytotoxic immune responses against devil facial tumor disease cells in Tasmanian devils (Sarcophilus harrisii) immunized with killed cell preparations. Vaccine 2015, 33, 3016–3025. [Google Scholar] [CrossRef] [Green Version]
- Woods, G.M.; Kreiss, A.; Belov, K.; Siddle, H.V.; Obendorf, D.L.; Muller, H.K. The immune response of the Tasmanian Devil (Sarcophilus harrisii) and devil facial tumor disease. Ecohealth 2007, 4, 338–345. [Google Scholar] [CrossRef]
- Kreiss, A.; Fox, N.; Bergfeld, J.; Quinn, S.J.; Pyecroft, S.; Woods, G.M. Assessment of cellular immune responses of healthy and diseased Tasmanian devils (Sarcophilus harrisii). Dev. Comp. Immunol. 2008, 32, 544–553. [Google Scholar] [CrossRef]
- Kreiss, A.; Wells, B.; Woods, G.M. The humoral immune response of the Tasmanian devil (Sarcophilus harrisii) against horse red blood cells. Vet. Immunol. Immunopathol. 2009, 130, 135–137. [Google Scholar] [CrossRef]
- Kreiss, A.; Obendorf, D.L.; Hemsley, S.; Canfield, P.J.; Woods, G.M. A histological and immunohistochemical analysis of lymphoid tissues of the Tasmanian devil. Anat. Rec. 2009, 292, 611–620. [Google Scholar] [CrossRef]
- Schmid-Hempel, P. Parasite immune evasion: A momentous molecular war. Trends Ecol. Evol. 2008, 23, 318–326. [Google Scholar] [CrossRef]
- Howson, L.J.; Morris, K.M.; Kobayashi, T.; Tovar, C.; Kreiss, A.; Papenfuss, A.T.; Corcoran, L.; Belov, K.; Woods, G.M. Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence for poor immune cell infiltration into devil facial tumors. Anat. Rec. 2014, 297, 925–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patchett, A.L.; Latham, R.; Brettingham-Moore, K.H.; Tovar, C.; Lyons, A.B.; Woods, G.M. Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil. Dev. Comp. Immunol. 2015, 53, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.K.; Tovar, C.; Cooray, A.A.; Kreiss, A.; Darby, J.; Murphy, J.M.; Corcoran, L.M.; Bettiol, S.S.; Lyons, A.B.; Woods, G.M. Mitogen activated Tasmanian devil blood mononuclear cells kill devil facial tumor disease cells. Immunol. Cell Biol. 2016, 94, 673–679. [Google Scholar] [CrossRef]
- Kreiss, A.; Cheng, Y.; Kimble, F.; Wells, B.; Donovan, S.; Belov, K.; Woods, G.M. Allorecognition in the Tasmanian devil (Sarcophilus harrisii), an endangered marsupial species with limited genetic diversity. PLoS ONE 2011, 6, e22402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos, L.A.; Gotuzzo, E. Intestinal protozoan infections in the immunocompromised host. Curr. Opin. Infect. Dis. 2013, 26, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.A. An overview of parasitic infections of the gastro-intestinal tract in developed countries affecting immunocompromised individuals. J. Parasit. Dis. 2017, 41, 621–626. [Google Scholar] [CrossRef]
- Maizels, R.M.; McSorley, H.J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 2016, 138, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Patchett, A.L.; Coorens, T.H.H.; Darby, J.; Wilson, R.; McKay, M.J.; Kamath, K.S.; Rubin, A.; Wakefield, M.; McIntosh, L.; Mangiola, S.; et al. Two of a kind: Transmissible Schwann cell cancers in the endangered Tasmanian devil (Sarcophilus harrisii). Cell. Mol. Life Sci. 2019. [Google Scholar] [CrossRef]
- Murchison, E.P.; Tovar, C.; Hsu, A.; Bender, H.S.; Kheradpour, P.; Rebbeck, C.A.; Obendorf, D.; Conlan, C.; Bahlo, M.; Blizzard, C.A.; et al. The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 2010, 327, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Sacks, D.; Sher, A. Evasion of innate immunity by parasitic protozoa. Nat. Immunol. 2002, 3, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Siddle, H.V.; Kreiss, A.; Tovar, C.; Yuen, C.K.; Cheng, Y.Y.; Belov, K.; Swift, K.; Pearse, A.M.; Hamede, R.; Jones, M.E.; et al. Reversible epigenetic down-regulation of MHC molecules by devil facial tumor disease illustrates immune escape by a contagious cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 5103–5108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosack, L.; Wingelhofer, B.; Popa, A.; Orlova, A.; Agerer, B.; Vilagos, B.; Majek, P.; Parapatics, K.; Lercher, A.; Ringler, A.; et al. The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease. Cancer Cell 2019, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, M.L.; Sparbier, C.E.; Chan, K.L.; Chan, Y.C.; Kersbergen, A.; Lam, E.Y.N.; Azidis-Yates, E.; Vassiliadis, D.; Bell, C.C.; Gilan, O.; et al. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell 2019, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovar, C.; Pye, R.J.; Kreiss, A.; Cheng, Y.; Brown, G.K.; Darby, J.M.; Malley, R.C.; Siddle, H.V.T.; Skjodt, K.; Kaufman, J.; et al. Regression of devil facial tumor disease following immunotherapy in immunised Tasmanian devils. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Pye, R.; Patchett, A.; McLennan, E.; Thomson, R.; Carver, S.; Fox, S.; Pemberton, D.; Kreiss, A.; Baz Morelli, A.; Silva, A.; et al. Immunization strategies producing a humoral IgG immune response against Devil Facial Tumor Disease in the majority of Tasmanian devils destined for wild release. Front. Immunol. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, B.B.; Armitage, E.P.; Kampmann, B.; de Silva, T.I. The efficacy, effectiveness, and immunogenicity of influenza vaccines in Africa: A systematic review. Lancet Infect. Dis. 2019, 19, e110–e119. [Google Scholar] [CrossRef]
- World Health Organization. Q&A on the Malaria Vaccine Implementation Programme (MVIP). Available online: https://www.who.int/malaria/media/malaria-vaccine-implementation-qa/en/ (accessed on 25 November 2019).
- Long, C.A.; Zavala, F. Malaria vaccines and human immune responses. Curr. Opin. Microbiol. 2016, 32, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.K.; Kreiss, A.; Lyons, A.B.; Woods, G.M. Natural killer cell mediated cytotoxic responses in the Tasmanian devil. PLoS ONE 2011, 6, e24475. [Google Scholar] [CrossRef]
- van der Kraan, L.E.; Wong, E.S.; Lo, N.; Ujvari, B.; Belov, K. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2013, 65, 25–35. [Google Scholar] [CrossRef]
- Saito, F.; Hirayasu, K.; Satoh, T.; Wang, C.W.; Lusingu, J.; Arimori, T.; Shida, K.; Palacpac, N.M.Q.; Itagaki, S.; Iwanaga, S.; et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors. Nature 2017, 552, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, A.; Coleby, R.; Tovar, C.; Stammnitz, M.R.; Kwon, Y.M.; Owen, R.S.; Tringides, M.; Murchison, E.P.; Skjodt, K.; Thomas, G.J.; et al. The newly-arisen devil facial tumor disease 2 (DFT2) reveals a mechanism for the emergence of a contagious cancer. eLife 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Kreiss, A.; Tovar, C.; Obendorf, D.L.; Dun, K.; Woods, G.M. A murine xenograft model for a transmissible cancer in Tasmanian devils. Vet. Pathol. 2011, 48, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Mideo, N.; Reece, S.E. Plasticity in parasite phenotypes: Evolutionary and ecological implications for disease. Future Microbiol. 2012, 7, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Maley, C.C.; Aktipis, A.; Graham, T.A.; Sottoriva, A.; Boddy, A.M.; Janiszewska, M.; Silva, A.S.; Gerlinger, M.; Yuan, Y.; Pienta, K.J.; et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 2017, 17, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Merlo, L.M.; Pepper, J.W.; Reid, B.J.; Maley, C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 2006, 6, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Flavahan, W.A.; Gaskell, E.; Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science 2017, 357. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.E.; Cockburn, A.; Hamede, R.; Hawkins, C.; Hesterman, H.; Lachish, S.; Mann, D.; McCallum, H.; Pemberton, D. Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl. Acad. Sci. USA 2008, 105, 10023–10027. [Google Scholar] [CrossRef] [Green Version]
- Russell, T.; Madsen, T.; Thomas, F.; Raven, N.; Hamede, R.; Ujvari, B. Oncogenesis as a Selective Force: Adaptive Evolution in the Face of a Transmissible Cancer. Bioessays 2018, 40. [Google Scholar] [CrossRef]
- Ostrander, E.A.; Davis, B.W.; Ostrander, G.K. Transmissible Tumors: Breaking the Cancer Paradigm. Trends Genet. 2016, 32, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lun, Z.R.; Lai, D.H.; Wen, Y.Z.; Zheng, L.L.; Shen, J.L.; Yang, T.B.; Zhou, W.L.; Qu, L.H.; Hide, G.; Ayala, F.J. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 2015, 112, 8835–8842. [Google Scholar] [CrossRef] [Green Version]
Immune Escape Strategies | Parasite Example |
---|---|
Avoid immune recognition | Plasmodium spp |
Quiescence | Plasmodium spp |
Avoid phagocytosis | Toxoplasma gondii |
Suppress the host’s immune response | Trichinella spiralis |
Block natural killer (NK) cells | Plasmodium falciparum |
Interfere with antigen processing | Plasmodium spp |
Modify antigen surface identity | Giardia Lamblia |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woods, G.M.; Lyons, A.B.; Bettiol, S.S. A Devil of a Transmissible Cancer. Trop. Med. Infect. Dis. 2020, 5, 50. https://doi.org/10.3390/tropicalmed5020050
Woods GM, Lyons AB, Bettiol SS. A Devil of a Transmissible Cancer. Tropical Medicine and Infectious Disease. 2020; 5(2):50. https://doi.org/10.3390/tropicalmed5020050
Chicago/Turabian StyleWoods, Gregory M., A. Bruce Lyons, and Silvana S. Bettiol. 2020. "A Devil of a Transmissible Cancer" Tropical Medicine and Infectious Disease 5, no. 2: 50. https://doi.org/10.3390/tropicalmed5020050
APA StyleWoods, G. M., Lyons, A. B., & Bettiol, S. S. (2020). A Devil of a Transmissible Cancer. Tropical Medicine and Infectious Disease, 5(2), 50. https://doi.org/10.3390/tropicalmed5020050