Bacterial Resistance in Pneumonia in Developing Countries—A Role for Iron Chelation
Abstract
:1. Introduction
2. Epidemiology
3. Resistance
4. Iron Chelation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leung, D.T.; Chisti, M.J.; Pavia, A.T. Prevention and Control of Childhood Pneumonia and Diarrhea. Pediatr. Clin. N. Am. 2016, 63, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisti, M.J.; Salam, M.A.; Bardhan, P.K.; Faruque, A.S.; Shahid, A.S.; Shahunja, K.M.; Das, S.K.; Hossain, M.I.; Ahmed, T. Treatment Failure and Mortality amongst Children with Severe Acute Malnutrition Presenting with Cough or Respiratory Difficulty and Radiological Pneumonia. PLoS ONE 2015, 10, e0140327. [Google Scholar] [CrossRef] [PubMed]
- Monogue, M.L.; Kuti, J.L.; Nicolau, D.P. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance. Expert Rev. Clin. Pharmacol. 2015, 16, 459–476. [Google Scholar] [CrossRef]
- Kaye, K.S.; Pogue, J.M. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Chisti, M.J.; Salam, M.A.; Bardhan, P.K.; Faruque, A.S.G.; Shahid, A.S.M.S.B.; Shahunja, K.M.; Das, S.K.; Hossain, M.I.; Ahmed, T. Severe Sepsis in Severely Malnourished Young Bangladeshi Children with Pneumonia: A Retrospective Case Control Study. PLoS ONE 2015, 10, e0139966. [Google Scholar] [CrossRef] [PubMed]
- Khiroya, H.; Turner, A.M. The role of iron in pulmonary pathology. Multidiscip. Respir. Med. 2015, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Committing to Child Survival: A Promise Renewed-Progress Report; UNICEF: New York, NY, USA, 2012; ISBN 9789280648157. [Google Scholar]
- Graham, S.M.; English, M.; Hazir, T.; Enarson, P.; Duke, T. Challenges to improving case management of childhood pneumonia at health facilities in resource-limited settings. Bull. World Health Organ. 2008, 86, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Chisti, M.J.; Duke, T.; Robertson, C.F.; Ahmed, T.; Faruque, A.S.G.; Bardhan, P.K.; La Vincente, S.; Salam, M.A. Co-morbidity: Exploring the clinical overlap between pneumonia and diarrhoea in a hospital in Dhaka, Bangladesh. Ann. Trop. Paediatr. 2011, 31, 311–319. [Google Scholar] [CrossRef]
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet 2010, 375, 1969–1987. [Google Scholar] [CrossRef]
- Liu, L.; Oza, S.; Hogan, D.; Perin, J.; Rudan, I.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: An updated systematic analysis. Lancet 2015, 385, 430–440. [Google Scholar] [CrossRef]
- Shoma, S.; Rahman, M.; Yasmin, M. Rapid detection of Haemophilus influenzae type b in Bangladeshi children with pneumonia and meningitis by PCR and analysis of antimicrobial resistance. J. Health. Popul. Nutr. 2001, 19, 268–274. [Google Scholar]
- Rudan, I.; O’Brien, K.L.; Nair, H.; Liu, L.; Theodoratou, E.; Qazi, S.; Lukšić, I.; Fischer Walker, C.L.; Black, R.E.; Campbell, H. Epidemiology and etiology of childhood pneumonia in 2010: Estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J. Glob. Health 2013, 3, 010401. [Google Scholar] [CrossRef]
- Barriere, S.L. Expert Opinion on Pharmacotherapy Clinical, economic and societal impact of antibiotic resistance. Expert Opin. Pharmacother. 2015, 16, 151–153. [Google Scholar] [CrossRef]
- No authors listed Sir Alexander Fleming—Discoverer of Penicillin. Calif. West Med. 1945, 63, 153.
- Jin, H.; Qiu, F.; Ji, H.; Lu, Q. Analysis of drug resistance in 1,861 strains of Acinetobacter baumannii. Biomed. Rep. 2016, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qiu, Y.; Shi, H.; Yin, H. The importance of lag time extension in determining bacterial resistance to antibiotics. Analyst 2016. [Google Scholar] [CrossRef]
- Walker, C.D.; Shankaran, S. Extended antibiotic resistance in carbapenemase-producing Klebsiella pneumoniae: A case series. Am. J. Infect. Control 2016, 10–12. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, Z.; Huang, W.; Yan, L.; Tang, J.; Liu, C.W. Epidemiologic analysis and control strategy of Klebsiella pneumoniae infection in intensive care units in a teaching hospital of People’s Republic of China. Infect. Drug Resist. 2019, 12, 391–398. [Google Scholar] [CrossRef]
- Song, J.; Jung, S.; Ko, K.S.; Young, N.; Son, J.S.; Chang, H.; Ki, H.K.; Oh, S.; Suh, J.Y.; Peck, K.R.; et al. High Prevalence of Antimicrobial Resistance among Clinical Streptococcus pneumoniae Isolates in Asia (an ANSORP Study ) High Prevalence of Antimicrobial Resistance among Clinical Streptococcus pneumoniae Isolates in Asia (an ANSORP Study). Antimicrob. Agents Chemother. 2004, 48, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Lee, N.Y.; Ichiyama, S.; Yoshida, R.; Hirakata, Y.; Fu, W.; Chongthaleong, A.; Aswapokee, N.; Chiu, C.H.; Lalitha, M.K.; et al. Spread of drug-resistant Streptococcus pneumoniae in Asian countries: Asian Network for Surveillance of Resistant Pathogens (ANSORP) Study. Clin. Infect. Dis. 1999, 28, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Cornick, J.E.; Bentley, S.D. Streptococcus pneumoniae: The evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect. 2012, 14, 573–583. [Google Scholar] [CrossRef]
- Felmingham, D.; Cantón, R.; Jenkins, S.G. Regional trends in β-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J. Infect. 2007, 55, 111–118. [Google Scholar] [CrossRef]
- Yayan, J.; Ghebremedhin, B.; Rasche, K. No Resistance to Penicillin, Cefuroxime, Cefotaxime, or Vancomycin in Pneumococcal Pneumonia. Int. J. Med. Sci. 2015, 12, 980–986. [Google Scholar] [CrossRef] [Green Version]
- Bullen, J.J.; Rogers, H.J.; Spalding, P.B.; Ward, C.G. Iron and infection: The heart of the matter. FEMS Immunol. Med. Microbiol. 2005, 43, 325–330. [Google Scholar] [CrossRef]
- Lehmann, C.; Islam, S.; Jarosch, S.; Zhou, J.; Hoskin, D.; Greenshields, A.; Al-Banna, N.; Sharawy, N.; Sczcesniak, A.; Kelly, M.; et al. The Utility of Iron Chelators in the Management of Inflammatory Disorders. Mediat. Inflamm. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Nairz, M.; Haschka, D.; Demetz, E.; Weiss, G. Iron at the interface of immunity and infection. Front. Pharmacol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Meyer, D. Iron chelation as therapy for HIV and Mycobacterium tuberculosis co-infection under conditions of iron overload. Curr. Pharm. Des. 2006, 12, 1943–1947. [Google Scholar] [CrossRef]
- Dragset, M.S.; Poce, G.; Alfonso, S.; Padilla-Benavides, T.; Ioerger, T.R.; Kaneko, T.; Sacchettini, J.C.; Biava, M.; Parish, T.; Argüello, J.M.; et al. A Novel Antimycobacterial Compound Acts as an Intracellular Iron Chelator. Antimicrob. Agents Chemother. 2015, 59, 2256–2264. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Spellberg, B.; Gebremariam, T.; Lee, H.; Xiong, Y.Q.; French, S.W.; Bayer, A.; Ibrahim, A.S. Combination therapy with iron chelation and vancomycin in treating murine staphylococcemia. Eur. J. Clin. Microb. Infect. Dis. 2014, 33, 845–851. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, G.; Peng, L.; Ren, Y.; Zhang, F. Active Screening of Multi-Drug Resistant Bacteria Effectively Prevent and Control the Potential Infections. Cell Biochem. Biophys. 2015, 71, 1235–1238. [Google Scholar] [CrossRef]
- Kontoghiorghes, G.J.; Kolnagou, A.; Skiada, A.; Petrikkos, G. The role of iron and chelators on infections in iron overload and non iron loaded conditions: Prospects for the design of new antimicrobial therapies. Hemoglobin 2010, 34, 227–239. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, S.; Chisti, M.J.; Ahmed, M.; Anwar, N.; Lehmann, C. Bacterial Resistance in Pneumonia in Developing Countries—A Role for Iron Chelation. Trop. Med. Infect. Dis. 2019, 4, 59. https://doi.org/10.3390/tropicalmed4020059
Islam S, Chisti MJ, Ahmed M, Anwar N, Lehmann C. Bacterial Resistance in Pneumonia in Developing Countries—A Role for Iron Chelation. Tropical Medicine and Infectious Disease. 2019; 4(2):59. https://doi.org/10.3390/tropicalmed4020059
Chicago/Turabian StyleIslam, Sufia, Mohammod Jobayer Chisti, Muniruddin Ahmed, Nafiza Anwar, and Christian Lehmann. 2019. "Bacterial Resistance in Pneumonia in Developing Countries—A Role for Iron Chelation" Tropical Medicine and Infectious Disease 4, no. 2: 59. https://doi.org/10.3390/tropicalmed4020059
APA StyleIslam, S., Chisti, M. J., Ahmed, M., Anwar, N., & Lehmann, C. (2019). Bacterial Resistance in Pneumonia in Developing Countries—A Role for Iron Chelation. Tropical Medicine and Infectious Disease, 4(2), 59. https://doi.org/10.3390/tropicalmed4020059