Onchodermatitis: Where Are We Now?
Abstract
:1. Introduction
2. Cutaneous Features
3. Imported Onchodermatitis
4. Burden of Disease
5. Immunopathogenesis
Imported Skin Disease Pathogenesis
6. Immunogenetics
7. New Diagnostics
7.1. Detection of Parasite in Humans
7.2. Serological Tests to Detect Exposure to O. volvulus
7.3. Detection of Parasite in Vector Blackflies
7.4. Detection of Biomarkers
8. Treatment
8.1. Effect of Ivermectin on Cutaneous Disease
8.2. Effect on Imported Skin Disease
8.3. Effect of Ivermectin on Psychosocial and Socio-Economic Aspects of Onchodermatits
9. Update on Onchocerciasis Control Programs and Elimination
9.1. Onchocerciasis Elimination Program for the Americas (OEPA)
9.2. African Program for Onchocerciasis Control (APOC)
9.3. Yemen
9.4. Challenges Faced by APOC
9.5. Health and Economic Impacts of MDA with Ivermectin
9.6. Effect on HIV
9.7. ESPEN
10. Newer Treatments
10.1. Anti-Wolbachia Treatments
10.2. Moxidectin
10.3. Ivermectin-Diethylcarbamazine-Albendazole
10.4. Emodepside
10.5. Genome Assemblies
10.6. Vaccine
11. Concept of Skin NTDs and Integrated Control and Management of Neglected Tropical Skin Diseases
12. Mathematical Modelling of Onchodermatitis
13. Conclusions
Funding
Conflicts of Interest
References
- World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: A roadmap for implementation; World Health Organization: Geneva, Switzerland, 2012; pp. 1–42. [Google Scholar]
- World Health Organization. Elimination of onchocerciasis in the WHO region of the Americas: Ecuador’s progress towards verification of elimination. Wkly. Epid. Rec. 2014, 89, 401–405. [Google Scholar]
- Mahdy, M.A.K.; Abdul-Ghani, R.; Abdulrahman, T.A.A.; Al-Eryani, S.M.A.; Al-Mekhlafi, A.M.; Alhaidari, S.A.A.; Azazy, A.A. Onchocerca volvulus infection in Tihama region-west of Yemen: Continuing transmission in ivermectin-targeted endemic foci and unveiled endemicity in districts with previously unknown status. PLoS Negl. Trop.Dis. 2018, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, M.E. Onchodermatitis. Curr. Opin. Infect. Dis. 2010, 23, 124–131. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Progress report on the elimination of human onchocerciasis, 2016–2017. Wkly. Epidemiol. Rec. 2017, 92, 681–694. [Google Scholar]
- Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systemic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef]
- Herricks, J.R.; Hotez, P.J.; Wanga, V.; Coffeng, L.E.; Haagsma, J.A.; Basáñez, M.G.; Buckle, G.; Budke, C.M.; Carabin, H.; Fèvre, E.M.; et al. The global burden of disease study 2013: What does it mean for the NTDs? PLoS Negl. Trop. Dis. 2017, 11, e0005424. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef]
- Vos, T.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef]
- Stokstad, E.; Vogel, G. Neglected tropical diseases get the limelight in Stockholm. Science 2015, 350, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Fobi, G.; Yameogo, L.; Noma, M.; Aholou, Y.; Koroma, J.B.; Zouré, H.M.; Ukety, T.; Lusamba-Dikassa, P.S.; Mwikisa, C.; Boakye, D.A.; et al. Managing the fight against onchocerciasis in Africa: APOC Experience. PLoS Negl. Trop. Dis. 2015, 9, e0003542. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.D. From ‘control to elimination’: A strategic change to win the end game. Int. Health 2015, 7, 304–305. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.D. Neglected tropical diseases in Africa: A new paradigm. Int. Health 2016, 8, i28–i33. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.; Callahan, K.; Katabarwa, M.; Richards, F.; Hopkins, D.; Withers, P.C.; Buyon, L.E.; McFarland, D. The contributions of onchocerciasis control and elimination programs toward the achievement of the Millennium Development Goals. PLoS Negl. Trop. Dis. 2015, 9, e0003703. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.J.; Mackenzie, C.D.; Guderian, R.; Noble, W.C.; Proano, J.R.; Williams, J.F. Onchodermatitis-correlation between skin disease and parasitic load in an endemic focus in Ecuador. Br. J. Dermatol. 1989, 121, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, M.E.; Hay, R.J.; Mackenzie, C.D.; Williams, J.F.; Ghalib, H.W.; Cousens, S.; Abiose, A.; Jones, B.R. A clinical classification and grading system of the cutaneous changes in onchocerciasis. Br. J. Dermatol. 1993, 129, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, M.E.; Murdoch, I.E.; Evans, J.; Yahaya, H.; Njepuome, N.; Cousens, S.; Jones, B.R.; Abiose, A. Pre-control relationship of onchocercal skin disease with onchocercal infection in Guinea Savanna, Northern Nigeria. PLoS Negl. Trop. Dis. 2017, 11, e0005489. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, M.E.; Asuzu, M.C.; Hagan, M.; Makunde, W.H.; Ngoumou, P.; Ogbuagu, K.F.; Okello, D.; Ozoh, G.; Remme, J. Onchocerciasis: The clinical and epidemiological burden of skin disease in Africa. Ann. Trop. Med. Parasitol. 2002, 96, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Al-Kubati, A.S.; Mackenzie, C.D.; Boakye, D.; Al-Qubati, Y.; Al-Samie, A.R.; Awad, I.E.; Thylefors, B.; Hopkins, A. Onchocerciasis in Yemen: Moving forward towards an elimination program. Int. Health 2018, 10, i89–i96. [Google Scholar] [CrossRef] [PubMed]
- Olusegun, A.F.; Ehis, O.C. Hyperendemicity of onchocerciasis in Ovia Northeast Local Government Area, Edo State, Nigeria. Malays. J. Med. Sci. 2010, 17, 20–24. [Google Scholar]
- Dori, G.U.; Belay, T.; Belete, H.; Panicker, K.N.; Hailu, A. Parasitological and clinico-epidemiological features of onchocerciasis in West Wellega, Ethiopia. J. Parasit. Dis. 2012, 36, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Eyo, J.E.; Onyishi, G.C.; Ugokwe, C.U. Rapid epidemiological assessment of onchocerciasis in a tropical semi-urban community, Enugu State, Nigeria. Iran. J. Parasitol. 2013, 8, 145–151. [Google Scholar] [PubMed]
- Coffeng, L.E.; Fobi, G.; Ozoh, G.; Bissek, A.C.; Nlatté, B.O.; Enyong, P.; Olinga, J.M.; Zouré, H.G.M.; Habbema, J.D.F.; Stolk, W.A.; et al. Concurrence of dermatological and ophthalmological morbidity in onchocerciasis. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, M.E.; Payton, A.; Abiose, A.; Thomson, W.; Panicker, V.K.; Dyer, P.A.; Jones, B.R.; Maizels, R.M.; Oilier, W.E.R. HLA-DQ alleles associate with cutaneous features of onchocerciasis. Hum. Immunol. 1997, 55, 46–52. [Google Scholar] [CrossRef]
- Norman, F.F.; de Ayala, A.P.; Pérez-Molina, J.A.; Monge-Maillo, B.; Zamarrón, P.; López-Vélez, R. Neglected tropical diseases outside the tropics. PLoS Negl. Trop. Dis. 2010, 4, e762. [Google Scholar] [CrossRef] [PubMed]
- Antinori, S.; Parravicini, C.; Galimberti, L.; Tosoni, A.; Giunta, P.; Galli, M.; Corbellino, M.; Ridolfo, A.L. Is imported onchocerciasis a truly rare entity? Case report and review of the literature. Travel Med. Infect. Dis. 2017, 16, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Develoux, M.; Hennequin, C.; Le Loup, G.; Paris, L.; Magne, D.; Belkadi, G.; Pialoux, G. Imported filariasis in Europe: A series of 31 cases from Metropolitan France. Eur. J. Intern. Med. 2017, 37, e37–e39. [Google Scholar] [CrossRef] [PubMed]
- Zammarchi, L.; Vellere, I.; Stella, L.; Bartalesi, F.; Strohmeyer, M.; Bartoloni, A. Spectrum and burden of neglected tropical diseases observed in an infectious and tropical diseases unit in Florence, Italy (2000–2015). Intern. Emerg. Med. 2017, 12, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Baum, S.; Greenberger, S.; Pavlotsky, F.; Solomon, M.; Enk, C.D.; Schwartz, E.; Barzilai, A. Late-onset onchocercal skin disease among Ethiopian immigrants. Br. J. Dermatol. 2014, 171, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Puente, S.; Ramirez-Olivencia, G.; Lago, M.; Subirats, M.; Perez-Blazquez, E.; Bru, F.; Garate, T.; Vicente, B.; Belhassen-Garcia, M.; Muro, A. Dermatological manifestations in onchocerciasis: A retrospective study of 400 imported cases. Enferm. Infect. Microbiol. Clin. 2017. [Google Scholar] [CrossRef] [PubMed]
- Lenk, E.J.; Redekop, W.K.; Luyendijk, M.; Rijnsburger, A.J.; Severens, J.L. Productivity loss related to neglected tropical diseases eligible for preventive chemotherapy: A systematic literature review. PLoS Negl. Trop. Dis. 2016, 10, e0004397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamarozzi, F.; Halliday, A.; Gentil, K.; Hoerauf, A.; Pearlman, E.; Taylor, M.J. Onchocerciasis: The role of Wolbachia bacterial endosymbionts in parasite biology, disease pathogenesis, and treatment. Clin. Microbiol. Rev. 2011, 24, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Adjobimey, T.; Hoerauf, A. Induction of immunoglobulin G4 in human filariasis: An indicator of immunoregulation. Ann. Trop. Med. Parasitol. 2010, 104, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Kwarteng, A.; Ahuno, S.T.; Akoto, F.O. Killing filarial nematode parasites: Role of treatment options and host immune response. Infect. Dis. Poverty 2016, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.D.E.; Trees, A.J.; Bah, G.S.; Hetzel, U.; Martin, C.; Bain, O.; Tanya, V.N.; Makepeace, B.L. A worm’s best friend: Recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proc. R. Soc. B Biol. Sci. 2011, 278, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Tamarozzi, F.; Wright, H.L.; Johnston, K.L.; Edwards, S.W.; Turner, J.D.; Taylor, M.J. Human filarial Wolbachia lipopeptide directly activates human neutrophils in vitro. Parasite Immunol. 2014, 36, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Tamarozzi, F.; Turner, J.D.; Pionnier, N.; Midgley, A.; Guimaraes, A.F.; Johnston, K.L.; Edwards, S.W.; Taylor, M.J. Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Sci. Rep. 2016, 6, 35559. [Google Scholar] [CrossRef] [PubMed]
- Korten, S.; Hoerauf, A.; Kaifi, J.T.; Büttner, D.W. Low levels of transforming growth factor-beta (TGF-beta) and reduced suppression of Th2-mediated inflammation in hyperreactive human onchocerciasis. Parasitology 2011, 138, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Katawa, G.; Layland, L.E.; Debrah, A.Y.; von Horn, C.; Batsa, L.; Kwarteng, A.; Arriens, S.; Taylor, D.W.; Specht, S.; Hoerauf, A.; et al. Hyperreactive onchocerciasis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells. PLoS Negl. Trop. Dis. 2015, 9, e3414. [Google Scholar] [CrossRef] [PubMed]
- Ajonina-Ekoti, I.; Ndjonka, D.; Tanyi, M.K.; Wilbertz, M.; Younis, A.E.; Boursou, D.; Kurosinski, M.A.; Eberle, R.; Lüersen, K.; Perbandt, M.; et al. Functional characterization and immune recognition of the extracellular superoxide dismutase from the human pathogenic parasite Onchocerca volvulus (OvEC-SOD). Acta Trop. 2012, 124, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Lechner, C.J.; Gantin, R.G.; Seeger, T.; Sarnecka, A.; Portillo, J.; Schulz-Key, H.; Karabou, P.K.; Helling-Giese, G.; Heuschkel, C.; Banla, M.; et al. Chemokines and cytokines in patients with an occult Onchocerca volvulus infection. Microbes Infect. 2012, 14, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, C.D.; Huntington, M.K.; Wanji, S.; Lovato, R.V.; Eversole, R.R.; Geary, T.G. The association of adult Onchocerca volvulus with lymphatic vessels. J. Parasitol. 2010, 96, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Attout, T.; Hoerauf, A.; Dénécé, G.; Debrah, A.Y.; Marfo-Debrekyei, Y.; Boussinesq, M.; Wanji, S.; Martinez, V.; Mand, S.; Adjei, O.; et al. Lymphatic vascularisation and involvement of Lyve-1+ macrophages in the human Onchocerca nodule. PLoS ONE 2009, 4, e0008234. [Google Scholar] [CrossRef] [PubMed]
- de Angelis, F.; Garzoli, A.; Battistini, A.; Iorio, A.; de Stefano, G.F. Genetic response to an environmental pathogenic agent: HLA-DQ and onchocerciasis in northwestern Ecuador. Tissue Antigens 2011, 79, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Unnasch, T.R.; Golden, A.; Cama, V.; Cantey, P.T. Diagnostics for onchocerciasis in the era of elimination. Int. Health 2018, 10, i20–i26. [Google Scholar] [CrossRef] [PubMed]
- Thiele, E.A.; Cama, V.A.; Lakwo, T.; Mekasha, S.; Abanyie, F.; Sleshi, M.; Kebede, A.; Cantey, P.T. Detection of onchocerca volvulus in skin snips by microscopy and real-time polymerase chain reaction: Implications for monitoring and evaluation activities. Am. J. Trop. Med. Hyg. 2016, 94, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Prince-Guerra, J.L.; Cama, V.A.; Wilson, N.; Thiele, E.A.; Likwela, J.; Ndakala, N.; wa Muzinga, J.M.; Ayebazibwe, N.; Ndjakani, Y.D.; Pitchouna, N.A.; et al. Comparison of PCR methods for Onchocerca volvulus detection in skin snip biopsies from the Tshopo Province, Democratic Republic of the Congo. Am. J. Trop. Med. Hyg. 2018, 98, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, S.A.; Beissner, M.; Saar, M.; Ali, S.; Zeynudin, A.; Tesfaye, K.; Adbaru, M.G.; Battke, F.; Poppert, S.; Hoelscher, M.; et al. O-5S quantitative real-time PCR: A new diagnostic tool for laboratory confirmation of human onchocerciasis. Parasites Vectors 2017, 10, 451. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Stopping Mass Drug Administration and Verifying Elimination of Human Onchocerciasis: Criteria and Procedures; WHO Press: Geneva, Switzerland, 2016. [Google Scholar]
- Gass, K.M. Rethinking the serological threshold for onchocerciasis elimination. PLoS Negl. Trop. Dis. 2018, 12, e0006249. [Google Scholar] [CrossRef] [PubMed]
- Steel, C.; Golden, A.; Stevens, E.; Yokobe, L.; Domingo, G.J.; De los Santos, T.; Nutman, T.B. Rapid point-of-contact tool for mapping and integrated surveillance of Wuchereria bancrofti and Onchocerca volvulus infection. Clin. Vaccine Immunol. 2015, 22, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Dieye, Y.; Storey, H.L.; Barrett, K.L.; Gerth-Guyette, E.; Di Giorgio, L.; Golden, A.; Faulx, D.; Kalnoky, M.; Ndiaye, M.K.N.; Sy, N.; et al. Feasibility of utilizing the SD BIOLINE Onchocerciasis IgG4 rapid test in onchocerciasis surveillance in Senegal. PLoS Negl. Trop. Dis. 2017, 11, e0005884. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, M.A.; Adeleke, M.A.; Burkett-Cadena, N.D.; Garza-Hernández, J.A.; Reyes-Villanueva, F.; Cupp, E.W.; Toé, L.; Salinas-Carmona, M.C.; Rodríguez-Ramírez, A.D.; Katholi, C.R.; et al. Development of a novel trap for the collection of blackflies of the Simulium ochraceum complex. PLoS ONE 2013, 8, e76814. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, M.A.; Adeleke, M.A.; Rodríguez-Luna, I.C.; Cupp, E.W.; Unnasch, T.R. Evaluation of a community-based trapping program to collect Simulium ochraceum sensu lato for verification of onchocerciasis elimination. PLoS Negl. Trop. Dis. 2014, 8, e3249. [Google Scholar] [CrossRef] [PubMed]
- Toé, L.D.; Koala, L.; Burkett-Cadena, N.D.; Traoré, B.M.; Sanfo, M.; Kambiré, S.R.; Cupp, E.W.; Traoré, S.; Yameogo, L.; Boakye, D.; et al. Optimization of the Esperanza window trap for the collection of the African onchocerciasis vector Simulium damnosum sensu lato. Acta Trop. 2014, 137, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Denery, J.R.; Nunes, A.A.K.; Hixon, M.S.; Dickerson, T.J.; Janda, K.D. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis. PLoS Negl. Trop. Dis. 2010, 4, e834. [Google Scholar] [CrossRef] [PubMed]
- Globisch, D.; Moreno, A.Y.; Hixon, M.S.; Nunes, A.A.K.; Denery, J.R.; Specht, S.; Hoerauf, A.; Janda, K.D. Onchocerca volvulus-neurotransmitter tyramine is a biomarker for river blindness. Proc. Natl. Acad. Sci. USA 2013, 110, 4218–4223. [Google Scholar] [CrossRef] [PubMed]
- Tritten, L.; Burkman, E.; Moorhead, A.; Satti, M.; Geary, J.; Mackenzie, C.; Geary, T. Detection of circulating parasite-derived microRNAs in filarial infections. PLoS Negl. Trop. Dis. 2014, 8, e2971. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.F.; Makepeace, B.L.; Babayan, S.A.; Ivens, A.; Pfarr, K.M.; Blaxter, M.; Debrah, A.; Wanji, S.; Ngangyung, H.F.; Bah, G.S.; et al. Extracellular Onchocerca-derived small RNAs in host nodules and blood. Parasites Vectors 2015, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lagatie, O.; Batsa-Debrah, L.; Debrah, A.; Stuyver, L.J. Plasma-derived parasitic microRNAs have insufficient concentrations to be used as diagnostic biomarker for detection of Onchocerca volvulus infection or treatment monitoring using LNA-based RT-qPCR. Parasitol. Res. 2017, 116, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Brieger, W.R.; Awedoba, A.K.; Eneanya, C.I.; Hagan, M.; Ogbuagu, K.F.; Okello, D.O.; Ososanya, O.O.; Ovuga, E.B.L.; Noma, M.; Kale, O.O.; et al. The effects of ivermectin on onchocercal skin disease and severe itching: Results of a multicentre trial. Trop. Med. Int. Heal. 1998, 3, 951–961. [Google Scholar] [CrossRef]
- Banic, D.M.; Calvão-Brito, R.H.S.; Marchon-Silva, V.; Schuertez, J.C.; de Lima Pinheiro, L.R.; da Costa-Alves, M.; Têva, A.; Maia-Herzog, M. Impact of 3 years ivermectin treatment on onchocerciasis in Yanomami communities in the Brazilian Amazon. Acta Trop. 2009, 112, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ozoh, G.A.; Murdoch, M.E.; Bissek, A.C.; Hagan, M.; Ogbuagu, K.; Shamad, M.; Braide, E.I.; Boussinesq, M.; Noma, M.M.; Murdoch, I.E.; et al. The African Programme for Onchocerciasis Control: Impact on onchocercal skin disease. Trop. Med. Int. Heal. 2011, 16, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A.; Belay, T.; Yehalaw, D.; Taha, M.; Zemene, E.; Zeynudin, A. Impact of six years community directed treatment with ivermectin in the control of onchocerciasis, western Ethiopia. PLoS ONE 2016, 11, e0141029. [Google Scholar] [CrossRef] [PubMed]
- Mbanefo, E.C.; Eneanya, C.I.; Nwaorgu, O.C.; Otiji, M.O.; Oguoma, V.M.; Ogolo, B.A. Onchocerciasis in Anambra State, Southeast Nigeria: Endemicity and clinical manifestations. Postgrad. Med. J. 2010, 86, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Kamga, G.R.; Dissak-Delon, F.N.; Nana-Djeunga, H.C.; Biholong, B.D.; Ghogomu, S.M.; Souopgui, J.; Kamgno, J.; Robert, A. Important progress towards elimination of onchocerciasis in the West Region of Cameroon. Parasites Vectors 2017, 10, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya, L.; Herrador, Z.; Ta-Tang, T.H.; Rubio, J.M.; Perteguer, M.J.; Hernandez-González, A.; García, B.; Nguema, R.; Nguema, J.; Ncogo, P.; et al. Evidence for suppression of onchocerciasis transmission in Bioko Island, Equatorial Guinea. PLoS Negl. Trop. Dis. 2016, 10, e0004829. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Pion, S.D.S.; Fang, H.; Gardon, J.; Kamgno, J.; Basáñez, M.G.; Boussinesq, M. Macrofilaricidal efficacy of repeated doses of ivermectin for the treatment of river blindness. Clin. Infect. Dis. 2017, 65, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Kudzi, W.; Dodoo, A.N.O.; Mills, J.J. Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: A plausible explanation for altered metabolism of ivermectin in humans? BMC Med. Genet. 2010, 11, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlassoff, C.; Weiss, M.; Ovuga, E.B.L.; Eneanya, C.; Nwel, P.T.; Babalola, S.S.; Awedoba, A.K.; Theophilus, B.; Cofie, P.; Shetabi, P. Gender and the stigma of onchocercal skin disease in Africa. Soc. Sci. Med. 2000, 50, 1353–1368. [Google Scholar] [CrossRef]
- Mbanefo, E.C.; Eneanya, C.I.; Nwaorgu, O.C.; Oguoma, V.M.; Otiji, M.O.; Ogolo, B.A. Onchocerciasis in Anambra State, Southeast Nigeria: Clinical and psychological aspects and sustainability of community directed treatment with ivermectin (CDTI). Postgrad. Med. J. 2010, 86, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Abanobi, O.; Chukwuocha, U.; Onwuliri, C.; Opara, K. Primary motives for demand of ivermectin drug in mass distribution programmes to control onchocerciasis. N. Am. J. Med. Sci. 2011, 3, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okeibunor, J.C.; Amuyunzu-Nyamongo, M.; Onyeneho, N.G.; Tchounkeu, Y.F.L.; Manianga, C.; Kabali, A.T.; Leak, S. Where would I be without ivermectin? Capturing the benefits of community-directed treatment with ivermectin in Africa. Trop. Med. Int. Heal. 2011, 16, 608–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchounkeu, Y.F.L.; Onyeneho, N.G.; Wanji, S.; Kabali, A.T.; Manianga, C.; Amazigo, U.V.; Amuyunzu-Nyamongo, M. Changes in stigma and discrimination of onchocerciasis in Africa. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Amuyunzu-Nyamongo, M.; Tchounkeu, Y.F.L.; Oyugi, R.A.; Kabali, A.T.; Okeibunor, J.C.; Manianga, C.; Amazigo, U.V. Drawing and interpreting data: Children’s impressions of onchocerciasis and community-directed treatment with ivermectin (CDTI) in four onchocerciasis endemic countries in Africa. Int. J. Qual. Stud. Health Well-Being 2011, 6, 5918. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.S.; Duque, S.; Olaya, L.A.; López, M.C.; Sánchez, S.B.; Morales, A.L.; Palma, G.I. Elimination of onchocerciasis from Colombia: First proof of concept of river blindness elimination in the world. Parasites Vectors 2018, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Progress towards eliminating onchocerciasis in the WHO Region of the Americas: verification of elimination of transmission in Guatemala. Wkly. Epid. Rec. 2016, 91, 501–505. [Google Scholar]
- Guevara, Á.; Lovato, R.; Proaño, R.; Rodriguez-Perez, M.A.; Unnasch, T.; Cooper, P.J.; Guderian, R.H. Elimination of onchocerciasis in Ecuador: Findings of post-treatment surveillance. Parasites Vectors 2018, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Diawara, L.; Traore, M.O.; Badji, A.; Bissan, Y.; Doumbia, K.; Goita, S.F.; Konate, L.; Mounkoro, K.; Sarr, M.D.; Seck, A.F.; et al. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: First evidence from studies in Mali and Senegal. PLoS Negl. Trop. Dis. 2009, 3, e497. [Google Scholar] [CrossRef] [PubMed]
- Traore, M.O.; Sarr, M.D.; Badji, A.; Bissan, Y.; Diawara, L.; Doumbia, K.; Goita, S.F.; Konate, L.; Mounkoro, K.; Seck, A.F.; et al. Proof-of-principle of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: Final results of a study in Mali and Senegal. PLoS Negl. Trop. Dis. 2012, 6, e1825. [Google Scholar] [CrossRef] [PubMed]
- Tekle, A.H.; Elhassan, E.; Isiyaku, S.; Amazigo, U.V.; Bush, S.; Noma, M.; Cousens, S.; Abiose, A.; Remme, J.H. Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: First evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control. Parasites Vectors 2012, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Traoré, S.; Wilson, M.D.; Sima, A.; Barro, T.; Diallo, A.; Aké, A.; Coulibaly, S.; Cheke, R.A.; Meyer, R.R.F.; Mas, J.; et al. The elimination of the onchocerciasis vector from the island of Bioko as a result of larviciding by the WHO African Programme for Onchocerciasis Control. Acta Trop. 2009, 111, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Garms, R.; Lakwo, T.L.; Ndyomugyenyi, R.; Kipp, W.; Rubaale, T.; Tukesiga, E.; Katamanywa, J.; Post, R.J.; Amazigo, U.V. The elimination of the vector Simulium neavei from the Itwara onchocerciasis focus in Uganda by ground larviciding. Acta Trop. 2009, 111, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Herrador, Z.; Garcia, B.; Ncogo, P.; Perteguer, M.J.; Rubio, J.M.; Rivas, E.; Cimas, M.; Ordoñez, G.; de Pablos, S.; Hernández-González, A.; et al. Interruption of onchocerciasis transmission in Bioko Island: Accelerating the movement from control to elimination in Equatorial Guinea. PLoS Negl. Trop. Dis. 2018, 12, e0006471. [Google Scholar] [CrossRef] [PubMed]
- Zarroug, I.M.A.; Hashim, K.; ElMubark, W.A.; Shumo, Z.A.I.; Salih, K.A.M.; ElNojomi, N.A.A.; Awad, H.A.; Aziz, N.; Katabarwa, M.; Hassan, H.K.; et al. The first confirmed elimination of an onchocerciasis focus in Africa: Abu Hamed, Sudan. Am. J. Trop. Med. Hyg. 2016, 95, 1037–1040. [Google Scholar] [CrossRef] [PubMed]
- Katabarwa, M.N.; Lakwo, T.; Habomugisha, P.; Unnasch, T.R.; Garms, R.; Hudson-Davis, L.; Byamukama, E.; Khainza, A.; Ngorok, J.; Tukahebwa, E.; et al. After 70 years of fighting an age-old scourge, onchocerciasis in Uganda, the end is in sight. Int. Health 2018, 10, i79–i88. [Google Scholar] [CrossRef] [PubMed]
- Rebollo, M.P.; Zoure, H.; Ogoussan, K.; Sodahlon, Y.; Ottesen, E.A.; Cantey, P.T. Onchocerciasis: Shifting the target from control to elimination requires a new first-step-elimination mapping. Int. Health 2018, 10, i14–i19. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Progress report on the elimination of human onchocerciasis, 2015–2016. Wkly. Epid. Rec. 2016, 43, 505–514. [Google Scholar]
- Makenga-Bof, J.C.; Maketa, V.; Bakajika, D.K.; Ntumba, F.; Mpunga, D.; Murdoch, M.E.; Hopkins, A.; Noma, M.M.; Zouré, H.; Tekle, A.H.; et al. Onchocerciasis control in the Democratic Republic of Congo (DRC): Challenges in a post-war environment. Trop. Med. Int. Heal. 2015, 20, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Koroma, J.B.; Sesay, S.; Conteh, A.; Koudou, B.; Paye, J.; Bah, M.; Sonnie, M.; Hodges, M.H.; Zhang, Y.; Bockarie, M.J. Impact of five annual rounds of mass drug administration with ivermectin on onchocerciasis in Sierra Leone. Infect. Dis. Poverty 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Kamgno, J.; Pion, S.D.; Chesnais, C.B.; Bakalar, M.H.; D’Ambrosio, M.V.; Mackenzie, C.D.; Nana-Djeunga, H.C.; Gounoue-Kamkumo, R.; Njitchouang, G.R.; Nwane, P.; et al. A test-and-not-treat strategy for onchocerciasis in Loa loa endemic areas. N. Engl. J. Med. 2017, 377, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Lakwo, T.; Ukety, T.; Bakajika, D.; Tukahebwa, E.; Awaca, P.; Amazigo, U. Cross-border collaboration in onchocerciasis elimination in Uganda: Progress, challenges and opportunities from 2008 to 2013. Glob. Health 2018, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Gustavsen, K.; Sodahlon, Y.; Bush, S. Cross-border collaboration for neglected tropical disease efforts-Lessons learned from onchocerciasis control and elimination in the Mano River Union (West Africa). Glob. Health 2016, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Bush, S.; Sodahlon, Y.; Downs, P.; Mackenzie, C.D. Cross-border issues: An important component of onchocerciasis elimination programmes. Int. Health 2018, 10, i54–i59. [Google Scholar] [CrossRef] [PubMed]
- Senyonjo, L.; Oye, J.; Bakajika, D.; Biholong, B.; Tekle, A.; Boakye, D.; Schmidt, E.; Elhassan, E. Factors associated with ivermectin non-compliance and its potential role in sustaining Onchocerca volvulus transmission in the west region of Cameroon. PLoS Negl. Trop. Dis. 2016, 10, e0004905. [Google Scholar] [CrossRef] [PubMed]
- Katabarwa, M.N.; Habomugisha, P.; Agunyo, S.; McKelvey, A.C.; Ogweng, N.; Kwebiiha, S.; Byenume, F.; Male, B.; McFarland, D. Traditional kinship system enhanced classic community-directed treatment with ivermectin (CDTI) for onchocerciasis control in Uganda. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Bogus, J.; Gankpala, L.; Fischer, K.; Krentel, A.; Weil, G.J.; Fischer, P.U.; Kollie, K.; Bolay, F.K. Community attitudes toward mass drug administration for control and elimination of neglected tropical diseases after the 2014 outbreak of Ebola virus disease in Lofa County, Liberia. Am. J. Trop. Med. Hyg. 2016, 94, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Coffeng, L.E.; Stolk, W.A.; Zouré, H.G.M.; Veerman, J.L.; Agblewonu, K.B.; Murdoch, M.E.; Noma, M.; Fobi, G.; Richardus, J.H.; Bundy, D.A.P.; et al. African Programme for Onchocerciasis Control 1995-2015: Updated health impact estimates based on new disability weights. PLoS Negl. Trop. Dis. 2014, 8, e2759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colebunders, R.; Mandro, M.; Njamnshi, A.K.; Boussinesq, M.; Hotterbeekx, A.; Kamgno, J.; O’Neill, S.; Hopkins, A.; Suykerbuyk, P.; Basáñez, M.G.; et al. Report of the first international workshop on onchocerciasis-associated epilepsy. Inf. Dis. Poverty 2018, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colebunders, R.; Nelson Siewe, F.J.; Hotterbeekx, A. Onchocerciasis-associated epilepsy, an additional reason for strengthening onchocerciasis elimination programs. Trends. Parasitol. 2018, 34, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Chesnais, C.B.N.A.; Zoung-Bissek, A.C.; Tatah, G.Y.; Nana-Djeunga, H.C.; Kamgno, J.; Colebunders, R.; Boussinesq, M. First evidence by a cohort study in Cameroon that onchocerciasis does induce epilepsy. In Proceedings of the 1st international workshop on onchocerciasis- associated epilepsy, Antwerp, Belgium, 12–14 October 2017. Lancet Infect. Dis. 2018, in press. [Google Scholar]
- Redekop, W.K.; Lenk, E.J.; Luyendijk, M.; Fitzpatrick, C.; Niessen, L.; Stolk, W.A.; Tediosi, F.; Rijnsburger, A.J.; Bakker, R.; Hontelez, J.A.C.; et al. The socioeconomic benefit to individuals of achieving the 2020 targets for five preventive chemotherapy neglected tropical diseases. PLoS Negl. Trop. Dis. 2017, 11, e0005289. [Google Scholar] [CrossRef] [PubMed]
- de Vlas, S.J.; Stolk, W.A.; le Rutte, E.A.; Hontelez, J.A.C.; Bakker, R.; Blok, D.J.; Cai, R.; Houweling, T.A.J.; Kulik, M.C.; Lenk, E.J.; et al. Concerted efforts to control or eliminate neglected tropical diseases: How much health will be gained? PLoS Negl. Trop. Dis. 2016, 10, e0004386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deribew, A.; Kebede, B.; Tessema, G.A.; Adama, Y.A.; Misganaw, A.; Gebre, T.; Hailu, A.; Biadgilign, S.; Amberbir, A.; Desalegn, B.; et al. Mortality and disability-adjusted life-years (Dalys) for common neglected tropical diseases in Ethiopia, 1990–2015: Evidence from the Global Burden of Disease Study 2015. Ethiop. Med. J. 2017, 55, 3–14. [Google Scholar] [PubMed]
- Kim, Y.E.; Stolk, W.A.; Tanner, M.; Tediosi, F. Modelling the health and economic impacts of the elimination of river blindness (onchocerciasis) in Africa. BMJ Glob. Heal. 2017, 2, e000158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, J.A.; Vos, T.; Hogan, D.R.; Gagnon, M.; Naghavi, M.; Mokdad, A.; Begum, N.; Shah, R.; Karyana, M.; Kosen, S.; et al. Common values in assessing health outcomes from disease and injury: Disability weights measurement study for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2129–2143. [Google Scholar] [CrossRef]
- Salomon, J.A.; Vos, T.; Murra, C.J.L. Disability weights for vision disorders in Global Burden of Disease study-Authors’ reply. Lancet 2013, 381, 23–24. [Google Scholar] [CrossRef]
- Krotneva, S.P.; Coffeng, L.E.; Noma, M.; Zouré, H.G.M.; Bakoné, L.; Amazigo, U.V.; de Vlas, S.J.; Stolk, W.A. African Program for Onchocerciasis Control 1995–2010: Impact of annual ivermectin mass treatment on off-target infectious diseases. PLoS Negl. Trop. Dis. 2015, 9, e0004051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Means, A.R.; Burns, P.; Sinclair, D.; JL, W. Antihelminthics in helminth-endemic areas: Effects on HIV disease progression (Review). Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.G. Impacts of neglected tropical disease on incidence and progression of HIV/AIDS, tuberculosis, and malaria: Scientific links. Int. J. Infect. Dis. 2016, 42, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Luroni, L.T.; Gabriel, M.; Tukahebwa, E.; Onapa, A.W.; Tinkitina, B.; Tukesiga, E.; Nyaraga, M.; Auma, A.M.; Habomugisha, P.; Byamukama, E.; et al. The interruption of Onchocerca volvulus and Wuchereria bancrofti transmission by integrated chemotherapy in the Obongi focus, North Western Uganda. PLoS ONE 2017, 12, e0189306. [Google Scholar] [CrossRef] [PubMed]
- Lakwo, T.; Garms, R.; Wamani, J.; Tukahebwa, E.M.; Byamukama, E.; Onapa, A.W.; Tukesiga, E.; Katamanywa, J.; Begumisa, S.; Habomugisha, P.; et al. Interruption of the transmission of Onchocerca volvulus in the Kashoya-Kitomi focus, western Uganda by long-term ivermectin treatment and elimination of the vector Simulium neavei by larviciding. Acta Trop. 2017, 167, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Boakye, D.; Tallant, J.; Adjami, A.; Moussa, S.; Tekle, A.; Robalo, M.; Rebollo, M.; Mwinza, P.; Sitima, L.; Cantey, P.; et al. Refocusing vector assessment towards the elimination of onchocerciasis from Africa: A review of the current status in selected countries. Int. Health 2018, 10, i27–i32. [Google Scholar] [CrossRef] [PubMed]
- Aljayyoussi, G.; Tyrer, H.E.; Ford, L.; Sjoberg, H.; Pionnier, N.; Waterhouse, D.; Davies, J.; Gamble, J.; Metugene, H.; Cook, D.A.N.; et al. Short-course, high-dose rifampicin achieves Wolbachia depletion predictive of curative outcomes in preclinical models of lymphatic filariasis and onchocerciasis. Sci. Rep. 2017, 7, 210. [Google Scholar] [CrossRef] [PubMed]
- Abegunde, A.T.; Ahuja, R.M.; Okafor, N.J. Doxycycline Plus Ivermectin Versus Ivermectin Alone for Treatment of Patients with Onchocerciasis (Review). Available online: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011146/epdf/full (accessed on 11 June 2014).
- Tamarozzi, F.; Tendongfor, N.; Enyong, P.A.; Esum, M.; Faragher, B.; Wanji, S.; Taylor, M.J. Long term impact of large scale community-directed delivery of doxycycline for the treatment of onchocerciasis. Parasites Vectors 2012, 5, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, M.; Specht, S.; Churcher, T.S.; Hoerauf, A.; Taylor, M.J.; Basáñez, M.G. Therapeutic efficacy and macrofilaricidal activity of doxycycline for the treatment of river blindness. Clin. Infect. Dis. 2015, 60, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Klarmann-Schulz, U.; Specht, S.; Debrah, A.Y.; Batsa, L.; Ayisi-Boateng, N.K.; Osei-Mensah, J.; Mubarik, Y.; Konadu, P.; Ricchiuto, A.; Fimmers, R.; et al. Comparison of doxycycline, minocycline, doxycycline plus albendazole and albendazole alone in their efficacy against onchocerciasis in a randomized, open-label, pilot trial. PLoS Negl. Trop. Dis. 2017, 11, e0005156. [Google Scholar] [CrossRef] [PubMed]
- Clare, R.H.; Cook, D.A.N.; Johnston, K.L.; Ford, L.; Ward, S.A.; Taylor, M.J. Development and validation of a high-throughput anti-Wolbachia whole-cell screen: A route to macrofilaricidal drugs against onchocerciasis and lymphatic filariasis. J. Biomol. Screen. 2015, 20, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Awadzi, K.; Opoku, N.O.; Attah, S.K.; Lazdins-Helds, J.; Kuesel, A.C. A randomized, single-ascending-dose, ivermectin-controlled, double-blind study of moxidectin in Onchocerca volvulus infection. PLoS Negl. Trop. Dis. 2014, 8, e2953. [Google Scholar] [CrossRef] [PubMed]
- Opoku, N.O.; Bakajika, D.K.; Kanza, E.M.; Howard, H.; Mambandu, G.L.; Nyathirombo, A.; Nigo, M.M.; Kasonia, K.; Masembe, S.L.; Mumbere, M.; et al. Single dose moxidectin versus ivermectin for Onchocerca volvulus infection in Ghana, Liberia, and the Democratic Republic of the Congo: A randomised, controlled, double-blind phase 3 trial. Lancet 2018. [Google Scholar] [CrossRef]
- Turner, H.C.; Walker, M.; Attah, S.K.; Opoku, N.O.; Awadzi, K.; Kuesel, A.C.; Basáñez, M.G. The potential impact of moxidectin on onchocerciasis elimination in Africa: an economic evaluation based on the phase II clinical trial data. Parasites Vectors 2015, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Fischer, P.U.; King, C.L.; Jacobson, J.A.; Weil, G.J. Potential value of triple drug therapy with ivermectin, diethylcarbamazine, and albendazole (ida) to accelerate elimination of lymphatic filariasis and onchocerciasis in Africa. PLoS Negl. Trop. Dis. 2017, 11, e0005163. [Google Scholar] [CrossRef] [PubMed]
- Crisford, A.; Ebbinghaus-Kintscher, U.; Schoenhense, E.; Harder, A.; Raming, K.; O’Kelly, I.; Ndukwe, K.; O’Connor, V.; Walker, R.J.; Holden-Dye, L. The cyclooctadepsipeptide anthelmintic emodepside differentially modulates nematode, insect and human calcium-activated potassium (SLO) channel alpha subunits. PLoS Negl. Trop. Dis. 2015, 9, e0004062. [Google Scholar] [CrossRef] [PubMed]
- Cotton, J.A.; Bennuru, S.; Grote, A.; Harsha, B.; Tracey, A.; Beech, R.; Doyle, S.R.; Dunn, M.; Hotopp, J.C.D.; Holroyd, N.; et al. The genome of Onchocerca volvulus, agent of river blindness. Nat. Microbiol. 2016, 2, 16216. [Google Scholar] [CrossRef] [PubMed]
- Lustigman, S.; Makepeace, B.L.; Klei, T.R.; Babayan, S.A.; Hotez, P.; Abraham, D.; Bottazzi, M.E. Onchocerca volvulus: The road from basic biology to a vaccine. Trends Parasitol. 2018, 34, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Lustigman, S. Sara Lustigman: Developing a vaccine to accelerate onchocerciasis elimination. Trends Parasitol. 2018, 34, 1–3. [Google Scholar]
- Mitjà, O.; Marks, M.; Bertran, L.; Kollie, K.; Argaw, D.; Fahal, A.H.; Fitzpatrick, C.; Fuller, L.C.; Garcia Izquierdo, B.; Hay, R.; et al. Integrated control and management of neglected tropical skin diseases. PLoS Negl. Trop. Dis. 2017, 11, e0005136. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Recognizing Neglected Tropical Diseases Through Changes on the Skin. A Training Guide for Front-line Health Workers. 2018. Available online: http://apps.who.int/iris/bitstream/handle/10665/272723/9789241513531-eng.pdf (accessed on 3 March 2018).
- Hofstraat, K.; van Brakel, A.H. Social stigma towards neglected tropical diseases: A systematic review. Int. Health 2016, 8, i53–i70. [Google Scholar] [CrossRef] [PubMed]
- Vinkeles Melchers, N.V.S.; Coffeng, L.E.; Murdoch, M.E.; Pedrique, B.; Bakker, R.; Ozoh, G.A.; de Vlas, S.J.; Stolk, W.A. Impact of ivermectin mass treatment on the burden of onchocercal skin and eye disease: detailed model predictions up to 2025. Am. J. Trop. Med. Hyg. 2016, 95, 345. [Google Scholar]
- World Health Organization. Summary of global update on preventive chemotherapy implementation in 2016: crossing the billion. Wkly. Epid. Rec. 2017, 92, 589–593. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murdoch, M.E. Onchodermatitis: Where Are We Now? Trop. Med. Infect. Dis. 2018, 3, 94. https://doi.org/10.3390/tropicalmed3030094
Murdoch ME. Onchodermatitis: Where Are We Now? Tropical Medicine and Infectious Disease. 2018; 3(3):94. https://doi.org/10.3390/tropicalmed3030094
Chicago/Turabian StyleMurdoch, Michele E. 2018. "Onchodermatitis: Where Are We Now?" Tropical Medicine and Infectious Disease 3, no. 3: 94. https://doi.org/10.3390/tropicalmed3030094
APA StyleMurdoch, M. E. (2018). Onchodermatitis: Where Are We Now? Tropical Medicine and Infectious Disease, 3(3), 94. https://doi.org/10.3390/tropicalmed3030094