The Comparative Performance of Klypson 500WG and 2GARD-WP Sprayed on Different Wall Surfaces Against Anopheles gambiae s.l. in Lower Moshi, Northern Tanzania
Abstract
:1. Background
2. Methods
2.1. Study Area
2.2. Mosquito Collection for Susceptibility Test
2.3. Susceptibility Tests
2.4. Indoor Residual Spraying
2.5. Preparation of Insecticides for Spraying
2.6. Calibration of the Sprayers
2.7. Spraying Procedure
2.8. Bio-Efficacy Tests of Insecticide-Treated Walls Against Laboratory Colony of An. gambiae
2.9. Data Analysis
2.10. Ethical Clearence
3. Results
3.1. Knockdown Time (KDT50 and KDT95) of An. gambiae s.l During 60 min of Exposure Time in a Susceptibility Test
3.2. The 24 h Mortality Rate of An. gambiae s.l. Post Exposures
3.3. The Knockdown Rates for An. gambiae Six Months Post Spray
3.4. The Overall Mortality Rate of An. gambiae on Insecticide-Treated House Walls in the Villages
3.5. The Percentage Mortality of An. gambiae Post-Exposure on Insecticide-Treated House Walls
3.6. The Effect of Different Wall Types on the Mortality of Exposed An. gambiae
3.7. The Percentage Mortality of An. gambiae Post-Exposure over Six Months
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Malaria Report 2024. Addressing Inequity in the Global Malaria Response; World Health Organization: Geneva, Switzerland, 2024; p. 320. [Google Scholar]
- Woyessa, A.; Deressa, W.; Ali, A.; Lindtjørn, B. Prevalence of malaria infection in Butajira area, south-central Ethiopia. Malar. J. 2012, 11, 1–8. [Google Scholar] [CrossRef]
- Bauserman, M.; Conroy, A.L.; North, K.; Patterson, J.; Bose, C.; Meshnick, S. An overview of malaria in pregnancy. Semin Perinatol. 2019, 43, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Kweka, E.; Mahande, A.; Ouma, J.; Karanja, W.; Msangi, S.; Temba, V.; Lyaruu, L.; Himeidan, Y. Novel indoor residual spray insecticide with extended mortality effect: A case of SumiShield 50WG against wild resistant populations of Anopheles arabiensis in Northern Tanzania. Glob. Health: Sci. Pract. 2018, 6, 758–765. [Google Scholar] [CrossRef]
- WHO. World Malaria Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Kweka, E.J.; Mazigo, H.D.; Lyaruu, L.J.; Mausa, E.A.; Venter, N.; Mahande, A.M.; Coetzee, M. Anopheline mosquito species composition, kdr mutation frequency, and parasite infectivity status in northern Tanzania. J. Med. Entomol. 2020, 57, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Kweka, E.; Mahande, A.; Nkya, W.; Assenga, C.; Lyatuu, E.; Mosha, F.; Mwakalinga, S.; Temu, E. Vector species composition and malaria infectivity rates in Mkuzi, Muheza District, north-eastern Tanzania. Tanzan. J. Health Res. 2008, 10, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Lees, R.S.; Praulins, G.; Lissenden, N.; South, A.; Carson, J.; Brown, F.; Lucas, J.; Malone, D. The residual efficacy of SumiShield™ 50WG and K-Othrine® WG250 IRS formulations applied to different building materials against Anopheles and Aedes mosquitoes. Insects 2022, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Oxborough, R.M.; Chilito, K.C.F.; Tokponnon, F.; Messenger, L.A. Malaria vector control in sub-Saharan Africa: Complex trade-offs to combat the growing threat of insecticide resistance. Lancet Planet. Health 2024, 8, e804–e812. [Google Scholar] [CrossRef] [PubMed]
- Oxborough, R.M. Trends in US President’s Malaria Initiative-funded indoor residual spray coverage and insecticide choice in sub-Saharan Africa (2008–2015): Urgent need for affordable, long-lasting insecticides. Malar. J. 2016, 15, 146. [Google Scholar] [CrossRef]
- Kakilla, C.; Manjurano, A.; Nelwin, K.; Martin, J.; Mashauri, F.; Kinung’hi, S.M.; Lyimo, E.; Mangalu, D.; Bernard, L.; Iwuchukwu, N. Malaria vector species composition and entomological indices following indoor residual spraying in regions bordering Lake Victoria, Tanzania. Malar. J. 2020, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Runge, M.; Thawer, S.G.; Molteni, F.; Chacky, F.; Mkude, S.; Mandike, R.; Snow, R.W.; Lengeler, C.; Mohamed, A.; Pothin, E. Sub-national tailoring of malaria interventions in Mainland Tanzania: Simulation of the impact of strata-specific intervention combinations using modelling. Malar. J. 2022, 21, 92. [Google Scholar] [CrossRef]
- Matiya, D.J.; Philbert, A.B.; Kidima, W.; Matowo, J.J. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017: A systematic review. Malar. J. 2019, 18, 1–16. [Google Scholar] [CrossRef]
- Matowo, J.; Kulkarni, M.A.; Mosha, F.W.; Oxborough, R.M.; Kitau, J.A.; Tenu, F.; Rowland, M. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar. J. 2010, 9, 1–9. [Google Scholar] [CrossRef]
- Kulkarni, M.A.; Rowland, M.; Alifrangis, M.; Mosha, F.W.; Matowo, J.; Malima, R.; Peter, J.; Kweka, E.; Lyimo, I.; Magesa, S. Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malar. J. 2006, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mahande, A.M.; Dusfour, I.; Matias, J.R.; Kweka, E.J. Knockdown resistance, rdl alleles, and the annual entomological inoculation rate of wild mosquito populations from lower Moshi, Northern Tanzania. J. Glob. Infect. Dis. 2012, 4, 114–119. [Google Scholar] [PubMed]
- Mbepera, S.; Nkwengulila, G.; Peter, R.; Mausa, E.A.; Mahande, A.M.; Coetzee, M.; Kweka, E.J. The influence of age on insecticide susceptibility of Anopheles arabiensis during dry and rainy seasons in rice irrigation schemes of Northern Tanzania. Malar. J. 2017, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nnko, E.J.; Kihamia, C.; Tenu, F.; Premji, Z.; Kweka, E.J. Insecticide use pattern and phenotypic susceptibility of Anopheles gambiae sensu lato to commonly used insecticides in Lower Moshi, northern Tanzania. BMC Res. Notes 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Kweka, E.J.; Lyaruu, L.; Massawe, A.S.; Sungi, I.H.; Mahande, A.M. The bioefficacy of a novel VECTRON™ T500 indoor residual spray formulation in an experimental huts trial against Anopheles gambiae sl populations. Acta Trop. 2024, 259, 107376. [Google Scholar] [CrossRef]
- Agumba, S.; Gimnig, J.E.; Ogonda, L.; Ombok, M.; Kosgei, J.; Munga, S.; Guyah, B.; Omondi, S.; Ochomo, E. Diagnostic dose determination and efficacy of chlorfenapyr and clothianidin insecticides against Anopheles malaria vector populations of western Kenya. Malar. J. 2019, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Snetselaar, J.; Rowland, M.W.; Manunda, B.J.; Kisengwa, E.M.; Small, G.J.; Malone, D.J.; Mosha, F.W.; Kirby, M.J. Efficacy of indoor residual spraying with broflanilide (TENEBENAL), a novel meta-diamide insecticide, against pyrethroid-resistant anopheline vectors in northern Tanzania: An experimental hut trial. PLoS ONE 2021, 16, e0248026. [Google Scholar] [CrossRef] [PubMed]
- Agossa, F.R.; Padonou, G.G.; Fassinou, A.J.Y.; Odjo, E.M.; Akuoko, O.K.; Salako, A.; Koukpo, Z.C.; Nwangwu, U.C.; Akinro, B.; Sezonlin, M. Small-scale field evaluation of the efficacy and residual effect of Fludora® Fusion (mixture of clothianidin and deltamethrin) against susceptible and resistant Anopheles gambiae populations from Benin, West Africa. Malar. J. 2018, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Agossa, F.R.; Padonou, G.G.; Koukpo, C.Z.; Zola-Sahossi, J.; Azondekon, R.; Akuoko, O.K.; Ahoga, J.; N’dombidje, B.; Akinro, B.; Fassinou, A.J.Y. Efficacy of a novel mode of action of an indoor residual spraying product, SumiShield® 50WG against susceptible and resistant populations of Anopheles gambiae (sl) in Benin, West Africa. Parasites Vectors 2018, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sreehari, U.; Raghavendra, K.; Tiwari, S.; Sreedharan, S.; Ghosh, S.; Valecha, N. Small-scale (Phase II) evaluation of the efficacy and residual activity of SumiShield® 50 WG (clothianidin 50%, w/w) for indoor residual spraying in comparison to deltamethrin, bendiocarb and pirimiphos-methyl for malaria vector control in Karnataka state, India. J. Vector Borne Dis. 2018, 55, 122–129. [Google Scholar] [PubMed]
- Yewhalaw, D.; Simma, E.A.; Zemene, E.; Zeleke, K.; Degefa, T. Residual efficacy of SumiShield™ 50WG for indoor residual spraying in Ethiopia. Malar. J. 2022, 21, 364. [Google Scholar] [CrossRef]
- Ngwej, L.M.; Hattingh, I.; Mlambo, G.; Mashat, E.M.; Kashala, J.-C.K.; Malonga, F.K.; Bangs, M.J. Indoor residual spray bio-efficacy and residual activity of a clothianidin-based formulation (SumiShield® 50WG) provides long persistence on various wall surfaces for malaria control in the Democratic Republic of the Congo. Malar. J. 2019, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Oxborough, R.M.; Seyoum, A.; Yihdego, Y.; Dabire, R.; Gnanguenon, V.; Wat’senga, F.; Agossa, F.R.; Yohannes, G.; Coleman, S.; Samdi, L.M. Susceptibility testing of Anopheles malaria vectors with the neonicotinoid insecticide clothianidin; results from 16 African countries, in preparation for indoor residual spraying with new insecticide formulations. Malar. J. 2019, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mashauri, F.M.; Kinung’hi, S.M.; Kaatano, G.M.; Magesa, S.M.; Kishamawe, C.; Mwanga, J.R.; Nnko, S.E.; Malima, R.C.; Mero, C.N.; Mboera, L.E. Impact of indoor residual spraying of lambda-cyhalothrin on malaria prevalence and anemia in an epidemic-prone district of Muleba, north-western Tanzania. Am. J. Trop. Med. Hyg. 2013, 88, 841. [Google Scholar] [CrossRef] [PubMed]
- The PMI VectorLink Project. The PMI VectorLink Project: Annual Report: October 1, 2021–September 30, 2022; The PMI VectorLink Project, Abt Associates: Rockville, MD, USA, 2022.
- WHO. Indoor Residual Spraying: An Operational Manual for Indoor Residual Spraying (Irs) for Malaria Transmission Control and Elimination; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- WHO. Global Technical Strategy for Malaria 2016–2030; World Health Organization: Geneva, Switzerland, 2015; p. 31. [Google Scholar]
- Raghavendra, K.; Rahi, M.; Verma, V.; Velamuri, P.S.; Kamaraju, D.; Baruah, K.; Chhibber-Goel, J.; Sharma, A. Insecticide resistance status of malaria vectors in the malaria endemic states of India: Implications and way forward for malaria elimination. Heliyon 2022, 8, e11902. [Google Scholar] [CrossRef]
- Gueye, M.; Dia, I.; Diedhiou, S.; Samb, B.; Kane Dia, A.; Diagne, M.; Faye, O.; Konaté, L. Evaluation of the efficacy of Fludora® Fusion WP-SB 56.25 (Mixture of Clothianidin and Deltamethrin) against Anopheles coluzzii laboratory and An. arabiensis wild colonies. Trop. Med. Infect. Dis. 2022, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Fuseini, G.; Phiri, W.P.; von Fricken, M.E.; Smith, J.; Garcia, G.A. Evaluation of the residual effectiveness of Fludora™ fusion WP-SB, a combination of clothianidin and deltamethrin, for the control of pyrethroid-resistant malaria vectors on Bioko Island, Equatorial Guinea. Acta Trop. 2019, 196, 42–47. [Google Scholar] [CrossRef]
- Fongnikin, A.; Houeto, N.; Agbevo, A.; Odjo, A.; Syme, T.; N’Guessan, R.; Ngufor, C. Efficacy of Fludora® Fusion (a mixture of deltamethrin and clothianidin) for indoor residual spraying against pyrethroid-resistant malaria vectors: Laboratory and experimental hut evaluation. Parasites Vectors 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Animut, A.; Horstmann, S. Residual efficacy of Fludora Fusion against Anopheles arabiensis in simple huts in Ethiopia. PLoS ONE 2022, 17, e0263840. [Google Scholar] [CrossRef]
- NBS. The 2022 Population and Housing Census. Available online: https://www.nbs.go.tz/uploads/statistics/documents/sw-1720088450-2022%20PHC%20Initial%20Results%20-%20English.pdf (accessed on 5 January 2025).
- Ijumba, J.; Shenton, F.; Clarke, S.; Mosha, F.; Lindsay, S. Irrigated crop production is associated with less malaria than traditional agricultural practices in Tanzania. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Ijumba, J.N.; Mosha, F.; Lindsay, S. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med. Vet. Entomol. 2002, 16, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Ishengoma, D.S.; Mmbando, B.P.; Rutta, A.S.; Malecela, M.N.; Mayala, B.; Lemnge, M.M.; Michael, E. Deployment and use of mobile phone technology for real-time reporting of fever cases and malaria treatment failure in areas of declining malaria transmission in Muheza district north-eastern Tanzania. Malar. J. 2017, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kassam, N.A.; Kaaya, R.D.; Damian, D.J.; Schmiegelow, C.; Kavishe, R.A.; Alifrangis, M.; Wang, C.W. Ten years of monitoring malaria trend and factors associated with malaria test positivity rates in Lower Moshi. Malar. J. 2021, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- WHO. Manual on Practical Entomology in Malaria. Part II. Methods and Techniques; World Health Organization: Geneva, Switzerland, 1975. [Google Scholar]
- Gillies, M.T.; De Meillon, B. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region); South African Institute for Medical Research: Johanesburg, South Africa, 1968. [Google Scholar]
- Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 1–20. [Google Scholar] [CrossRef]
- WHO. Guidelines on Public Health Pesticide Management Policy; WHO Regional Office for South-East Asia: New Delhi, India, 2010. [Google Scholar]
- Odjo, E.M.; Salako, A.S.; Padonou, G.G.; Yovogan, B.; Adoha, C.J.; Adjottin, B.; Sominahouin, A.A.; Sovi, A.; Osse, R.; Kpanou, C.D. What can be learned from the residual efficacy of three formulations of insecticides (pirimiphos-methyl, clothianidin and deltamethrin mixture, and clothianidin alone) in large-scale in community trial in North Benin, West Africa? Malar. J. 2023, 22, 150. [Google Scholar] [CrossRef]
- Chabi, J.; Seyoum, A.; Edi, C.V.; Kouassi, B.L.; Yihdego, Y.; Oxborough, R.; Gbalegba, C.G.; Johns, B.; Desale, S.; Irish, S.R. Efficacy of partial spraying of SumiShield, Fludora Fusion and Actellic against wild populations of Anopheles gambiae sl in experimental huts in Tiassalé, Côte d’Ivoire. Sci. Rep. 2023, 13, 11364. [Google Scholar] [CrossRef]
- WHO. Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Maharaj, R.; Seocharan, I.; Lakan, V.; Nyawo, Z.; Mkhabela, M.; Balakrishna, Y. Field evaluation of the residual efficacy of new generation insecticides for potential use in indoor residual spray programmes in South Africa. Malar. J. 2024, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Marti-Soler, H.; Máquina, M.; Opiyo, M.; Alafo, C.; Sherrard-Smith, E.; Malheia, A.; Cuamba, N.; Sacoor, C.; Rabinovich, R.; Aide, P. Effect of wall type, delayed mortality and mosquito age on the residual efficacy of a clothianidin-based indoor residual spray formulation (SumiShield™ 50WG) in southern Mozambique. PLoS ONE 2021, 16, e0248604. [Google Scholar] [CrossRef] [PubMed]
Insecticide | KDT50 (95% CI) | KDT95 (95% CI) |
---|---|---|
Klypson 2% | 38.46 (35.96–41.03) | 96.34 (91.11–102.37) |
Deltamethrin 0.05% | 41.92 (39.43–44.50) | 99.81 (94.45–105.97) |
Permethrin 0.75% | 52.49 (49.76–55.44) | 110.38 (104.43–117.25) |
Pirimiphos-methyl 0.25% | 82.08 (77.58–87.10) | 139.97 (131.99–149.17) |
Mosquito Knockdown Rate in 60 min After Exposure | |||||||
---|---|---|---|---|---|---|---|
Months | Insecticide | September | October | November | December | January | February |
Burned-bricks | Klypson 500WP | 94.29 | 82.95 | 79.55 | 76.97 | 70 | 77.5 |
2GARD-WP | 97.50 | 87.86 | 82.07 | 84.52 | 80.63 | 82.81 | |
p-value | 0.125 | 0.1 | 0.514 | 0.033 | 0.94 | 0.073 | |
Plastered-rough | Klypson 500WP | 92.26 | 74.894 | 75.0 | 77.143 | 73.45 | 72.875 |
2GARD-WP | 95.00 | 83.462 | 84.30 | 82.58 | 85.46 | 85.313 | |
p-value | 0.312 | 0.088 | 0.002 | 0.046 | 0.0001 | 0.013 | |
Plastered-smooth | Klypson 500WP | 86.90 | 73.49 | 76.86 | 75.43 | 75.25 | 73.61 |
2GARD-WP | 92.50 | 82.73 | 80.86 | 83.33 | 87.14 | 85.80 | |
p-value | 0.053 | 0.0003 | 0.304 | 0.046 | 0.001 | 0.0009 |
Wall Type | Insecticide | 24 h | 48 h | 72 h | 96 h | 120 h | 144 h | 168 h |
---|---|---|---|---|---|---|---|---|
Burned bricks | Klypson 500WP | 93.2 | 96.94 | 99.9 | 100 | 100 | 100 | 100 |
2GARD-WP | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
p-value | <0.0001 | <0.0001 | 0.317 | - | - | - | - | |
Rough plaster | Klypson 500WP | 93.8 | 95 | 100 | 100 | 100 | 100 | 100 |
2GARD-WP | 95 | 100 | 100 | 100 | 100 | 100 | 100 | |
p-value | 0.38 | <0.0001 | - | - | - | - | - | |
Plastered-smooth plaster | Klypson 500WP | 95 | 97.87 | 99.2 | 99.7 | 99.7 | 99.8 | 99.9 |
2GARD-WP | 99.6 | 99.3 | 99.95 | 100 | 100 | 100 | 100 | |
p-value | <0.001 | <0.131 | <0.11 | 0.4 | 0.208 | 0.115 | 0.148 |
Months | Insecticide | 24 h | 48 h | 72 h | 96 h | 120 h | 144 h | 168 h |
---|---|---|---|---|---|---|---|---|
September 2021 | Klypson 500WG | 92 | 96.2 | 99.2 | 99.6 | 99.6 | 100 | 100 |
2GARD-WP | 95 | 98.9 | 100 | 100 | 100 | 100 | 100 | |
p-value | 0.267 | 0.185 | 0.295 | 0.295 | - | - | - | |
October 2021 | Klypson 500WG | 92.0 | 88.5 | 99.5 | 100 | 100 | 100 | 98.1 |
2GARD-WP | 96.3 | 98.1 | 99.5 | 100 | 100 | 100 | 100 | |
p-value | 0.009 | 0.003 | 0.996 | - | - | - | 0.616 | |
November 2021 | Klypson 500WG | 94.4 | 90.7 | 99.4 | 100 | 100 | 100 | 100 |
2GARD-WP | 97.3 | 98.6 | 99.3 | 100 | 100 | 100 | 100 | |
p-value | 0.008 | 0.019 | 0.971 | - | - | - | - | |
December 2021 | Klypson 500WG | 90.6 | 97.8 | 99.5 | 99.8 | 100 | 100 | 100 |
2GARD-WP | 98.0 | 99.8 | 100 | 100 | 100 | 100 | 100 | |
p-value | <0.001 | 0.005 | 0.08 | 0.319 | - | - | - | |
January 2022 | Klypson 500WG | 87.7 | 97.5 | 99.7 | 100 | 100 | 100 | 100 |
2GARD-WP | 93.7 | 99.7 | 100 | 100 | 100 | 100 | 100 | |
p-value | 0.008 | 0.006 | 0.163 | - | - | - | - | |
February 2022 | Klypson 500WG | 94.5 | 98.0 | 99.5 | 100 | 100 | 100 | 100 |
2GARD-WP | 98.3 | 99.9 | 100 | 100 | 100 | 100 | 100 | |
p-value | 0.005 | 0.013 | 0.081 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.J.; Matiya, D.J.; Chibwana, F.D.; Kidima, W.; Mahande, A.M.; Kweka, E.J. The Comparative Performance of Klypson 500WG and 2GARD-WP Sprayed on Different Wall Surfaces Against Anopheles gambiae s.l. in Lower Moshi, Northern Tanzania. Trop. Med. Infect. Dis. 2025, 10, 63. https://doi.org/10.3390/tropicalmed10030063
Mohamed MJ, Matiya DJ, Chibwana FD, Kidima W, Mahande AM, Kweka EJ. The Comparative Performance of Klypson 500WG and 2GARD-WP Sprayed on Different Wall Surfaces Against Anopheles gambiae s.l. in Lower Moshi, Northern Tanzania. Tropical Medicine and Infectious Disease. 2025; 10(3):63. https://doi.org/10.3390/tropicalmed10030063
Chicago/Turabian StyleMohamed, Maua J., Deokary J. Matiya, Fred D. Chibwana, Winfrida Kidima, Aneth M. Mahande, and Eliningaya J. Kweka. 2025. "The Comparative Performance of Klypson 500WG and 2GARD-WP Sprayed on Different Wall Surfaces Against Anopheles gambiae s.l. in Lower Moshi, Northern Tanzania" Tropical Medicine and Infectious Disease 10, no. 3: 63. https://doi.org/10.3390/tropicalmed10030063
APA StyleMohamed, M. J., Matiya, D. J., Chibwana, F. D., Kidima, W., Mahande, A. M., & Kweka, E. J. (2025). The Comparative Performance of Klypson 500WG and 2GARD-WP Sprayed on Different Wall Surfaces Against Anopheles gambiae s.l. in Lower Moshi, Northern Tanzania. Tropical Medicine and Infectious Disease, 10(3), 63. https://doi.org/10.3390/tropicalmed10030063