TrainAR: A Scalable Interaction Concept and Didactic Framework for Procedural Trainings Using Handheld Augmented Reality
Abstract
:1. Introduction
1.1. Computer- and Web-Based Trainings
1.2. Augmented Reality-Based Trainings
1.3. Acceptance & Scalability of ARBTs
- ubiquitous availability of devices,
- place and time independence for self-regulated learning,
- high usability and low entry threshold to compensate low levels of media competency,
- clear concepts for interaction and didactic to maximize the support for teachers in defining new learning materials
2. Related Work
2.1. Procedural Augmented Reality Trainings
2.2. Handheld Augmented Reality Interaction Concepts
3. Interaction Concept
3.1. Virtual Training Assembly
3.2. Adaptive Instructions
3.3. User Actions
3.4. Layered Feedback
3.5. Insights
4. Exemplary Implementation: Midwifery AR Training
4.1. Onboarding
4.2. Instructions
4.3. User Actions
4.4. Guidance & Feedback
4.5. Professional Midwife Insights
4.6. Training Assessment
5. Formative Evaluations & Subsequent Improvements
5.1. Participants
5.2. Results
5.2.1. Usability
5.2.2. User Experience
5.2.3. Qualitative Feedback
5.3. Subsequent Improvements
6. Didactic Framework
6.1. Training Contextualisation & Structure
6.2. Integration in Curricular Teaching
6.3. Applying TrainAR to Procedural Training Tasks
6.3.1. Identifying & Observing the Procedural Task
6.3.2. Analysing & Deriving the Work-Process-Description
6.3.3. Definition of Competency-Based Learning Objectives
6.3.4. Transformation towards a TrainAR Training
7. Discussion
7.1. Scalability of TrainAR
7.2. Towards a Usable Interaction Concept
7.3. Opportunities and Challenges of the Didactic Framework
8. Conclusions
Limitations & Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
VR | Virtual Reality |
ARBT | Augmented Reality-based Training |
CBT | Computer-based Training |
WBT | Web-based Training |
TAM | Technology Acceptance Model |
BYOD | Bring-your-own-device Approach |
UI | User Interface |
SUS | System Usability Scale |
UEQ | User Experience Questionnaire |
MARE | Mobile Augmented Reality Education Design Frameworks |
References
- Stigler, J.W.; Hiebert, J. The Teaching Gap: Best Ideas from the World’s Teachers for Improving Education in the Classroom; The Free Press: New York, NY, USA, 1999. [Google Scholar]
- Capper, J. E-learning growth and promise for the developing world. TechKnowLogia 2001, 2, 7–10. [Google Scholar]
- Park, S.Y. An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. J. Educ. Technol. Soc. 2009, 12, 150–162. [Google Scholar]
- Lahti, M.; Hätönen, H.; Välimäki, M. Impact of e-learning on nurses’ and student nurses knowledge, skills, and satisfaction: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2014, 51, 136–149. [Google Scholar] [CrossRef]
- MacDonald, C.J.; Thompson, T.L. Structure, content, delivery, service, and outcomes: Quality e-learning in higher education. Int. Rev. Res. Open Distrib. Learn. 2005, 6. [Google Scholar] [CrossRef] [Green Version]
- Gagne, R.M.; Briggs, L.J. Principles of Instructional Design; Holt, Rinehart & Winston: New York, NY, USA, 1974. [Google Scholar]
- Gagne, R.M. Learning outcomes and their effects: Useful categories of human performance. Am. Psychol. 1984, 39, 377. [Google Scholar] [CrossRef]
- Krathwohl, D.R.; Anderson, L.W. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives; Longman: London, UK, 2009. [Google Scholar]
- Blattgerste, J.; Luksch, K.; Lewa, C.; Kunzendorf, M.; Bauer, N.H.; Bernloehr, A.; Joswig, M.; Schäfer, T.; Pfeiffer, T. Project Heb@ AR: Exploring handheld Augmented Reality training to supplement academic midwifery education. In DELFI 2020—Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik eV; Gesellschaft für Informatik e.V.: Bonn, Germany, 2020. [Google Scholar]
- Santos, M.E.C.; Lübke, A.I.W.; Taketomi, T.; Yamamoto, G.; Rodrigo, M.M.T.; Sandor, C.; Kato, H. Augmented reality as multimedia: The case for situated vocabulary learning. Res. Pract. Technol. Enhanc. Learn. 2016, 11, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, M.; Sahin, C.; Arcagok, S.; Demir, M.K. The effect of augmented reality applications in the learning process: A meta-analysis study. Eurasian J. Educ. Res. 2018, 18, 165–186. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.M.; Teixeira, J.M.X.; Cavalcante, P.S.; Teichrieb, V. Perspectives on how to evaluate augmented reality technology tools for education: A systematic review. J. Braz. Comput. Soc. 2019, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Quintero, J.; Baldiris, S.; Rubira, R.; Cerón, J.; Velez, G. Augmented reality in educational inclusion. A systematic review on the last decade. Front. Psychol. 2019, 10, 1835. [Google Scholar] [CrossRef] [Green Version]
- Dalim, C.S.C.; Kolivand, H.; Kadhim, H.; Sunar, M.S.; Billinghurst, M. Factors influencing the acceptance of augmented reality in education: A review of the literature. J. Comput. Sci. 2017, 13, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.H.; Tsai, C.C. Affordances of augmented reality in science learning: Suggestions for future research. J. Sci. Educ. Technol. 2013, 22, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Anne, A.; Ropp, T. Applying the technology acceptance model to understand aviation students’ perceptions toward augmented reality maintenance training instruction. Int. J. Aviat. Aeronaut. Aerosp. 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Ko, Y.; Shin, W.S.; Han, I. Augmented Reality and Virtual Reality for Learning: An Examination Using an Extended Technology Acceptance Model. IEEE Access 2021, 9, 6798–6809. [Google Scholar] [CrossRef]
- Turner, M.; Kitchenham, B.; Brereton, P.; Charters, S.; Budgen, D. Does the technology acceptance model predict actual use? A systematic literature review. Inf. Softw. Technol. 2010, 52, 463–479. [Google Scholar] [CrossRef]
- Tzima, S.; Styliaras, G.; Bassounas, A. Augmented reality applications in education: Teachers point of view. Educ. Sci. 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- ARCore. Available online: https://developers.google.com/ar/discover/ (accessed on 28 May 2021).
- ARKit 4. Available online: https://developer.apple.com/augmented-reality/arkit/ (accessed on 28 May 2021).
- Palmarini, R.; Erkoyuncu, J.A.; Roy, R.; Torabmostaedi, H. A systematic review of augmented reality applications in maintenance. Robot. Comput.-Integr. Manuf. 2018, 49, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Blattgerste, J.; Renner, P.; Pfeiffer, T. Augmented reality action assistance and learning for cognitively impaired people: A systematic literature review. In Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; pp. 270–279. [Google Scholar]
- Müller, T. Challenges in representing information with augmented reality to support manual procedural tasks. AIMS Electron. Electr. Eng. 2019, 3, 71–97. [Google Scholar] [CrossRef]
- Chidambaram, S.; Huang, H.; He, F.; Qian, X.; Villanueva, A.M.; Redick, T.S.; Stuerzlinger, W.; Ramani, K. ProcessAR: An Augmented Reality-Based Tool to Create In-Situ Procedural 2D/3D AR Instructions. In Proceedings of the Designing Interactive Systems Conference 2021, Virtual Event, USA, 28 June–2 July 2021. [Google Scholar] [CrossRef]
- Büttner, S.; Prilla, M.; Röcker, C. Augmented Reality Training for Industrial Assembly Work-Are Projection-based AR Assistive Systems an Appropriate Tool for Assembly Training? In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–12. [Google Scholar]
- Singh, K.; Shrivastava, A.; Achary, K.; Dey, A.; Sharma, O. Augmented Reality-Based Procedural Task Training Application for Less Privileged Children and Autistic Individuals. In Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry, Brisbane, QLD, Australia, 14–16 November 2019; pp. 1–10. [Google Scholar]
- Hruntova, T.V.; Yechkalo, Y.V.; Striuk, A.M.; Pikilnyak, A.V. Augmented reality tools in physics training at higher technical educational institutions. In Proceedings of the 1st International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, 2 October 2018; pp. 33–40. [Google Scholar]
- Solmaz, S.; Alfaro, J.L.D.; Santos, P.; Van Puyvelde, P.; Van Gerven, T. A practical development of engineering simulation-assisted educational AR environments. Educ. Chem. Eng. 2021, 35, 81–93. [Google Scholar] [CrossRef]
- Wang, S.; Parsons, M.; Stone-McLean, J.; Rogers, P.; Boyd, S.; Hoover, K.; Meruvia-Pastor, O.; Gong, M.; Smith, A. Augmented reality as a telemedicine platform for remote procedural training. Sensors 2017, 17, 2294. [Google Scholar] [CrossRef]
- Goh, E.S.; Sunar, M.S.; Ismail, A.W. 3D object manipulation techniques in handheld mobile augmented reality interface: A review. IEEE Access 2019, 7, 40581–40601. [Google Scholar] [CrossRef]
- Yusof, C.S.; Bai, H.; Billinghurst, M.; Sunar, M.S. A review of 3D gesture interaction for handheld augmented reality. J. Teknol. 2016, 78. [Google Scholar] [CrossRef] [Green Version]
- Liarokapis, F.; Macan, L.; Malone, G.; Rebolledo-Mendez, G.; De Freitas, S. Multimodal augmented reality tangible gaming. Vis. Comput. 2009, 25, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- Billinghurst, M.; Kato, H.; Poupyrev, I. Tangible augmented reality. ACM Siggraph Asia 2008, 7, 1–10. [Google Scholar]
- Knierim, P.; Kiss, F.; Rauh, M.; Schmidt, A. Tangibility is Overrated: Comparing Learning Experiences of Physical Setups and their Virtual Equivalent in Augmented Reality. In Proceedings of the 19th International Conference on Mobile and Ubiquitous Multimedia, Essen, Germany, 22–25 November 2020; pp. 299–305. [Google Scholar]
- Qian, J.; Ma, J.; Li, X.; Attal, B.; Lai, H.; Tompkin, J.; Hughes, J.F.; Huang, J. Portal-ble: Intuitive free-hand manipulation in unbounded smartphone-based augmented reality. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, New Orleans, LA, USA, 20–23 October 2019; pp. 133–145. [Google Scholar]
- Hürst, W.; Van Wezel, C. Gesture-based interaction via finger tracking for mobile augmented reality. Multimed. Tools Appl. 2013, 62, 233–258. [Google Scholar] [CrossRef] [Green Version]
- Datcu, D.; Lukosch, S.; Brazier, F. On the usability and effectiveness of different interaction types in augmented reality. Int. J. Hum. Comput. Interact. 2015, 31, 193–209. [Google Scholar] [CrossRef]
- Mossel, A.; Venditti, B.; Kaufmann, H. 3DTouch and HOMER-S: Intuitive manipulation techniques for one-handed handheld augmented reality. In Proceedings of the Virtual Reality International Conference: Laval Virtual, Laval, France, 20–22 March 2013; pp. 1–10. [Google Scholar]
- Radu, I.; MacIntyre, B.; Lourenco, S. Comparing Children’s Crosshair and Finger Interactions in Handheld Augmented Reality: Relationships Between Usability and Child Development. In Proceedings of the 15th International Conference on Interaction Design and Children, Manchester, UK, 21–24 June 2016; pp. 288–298. [Google Scholar]
- Grandi, J.G.; Debarba, H.G.; Bemdt, I.; Nedel, L.; Maciel, A. Design and assessment of a collaborative 3D interaction technique for handheld augmented reality. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Tuebingen/Reutlingen, Germany, 18–22 March 2018; pp. 49–56. [Google Scholar]
- Blattgerste, J.; Renner, P.; Strenge, B.; Pfeiffer, T. In-situ instructions exceed side-by-side instructions in augmented reality assisted assembly. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 26–29 June 2018; pp. 133–140. [Google Scholar]
- Brooke, J. SUS: A quick and dirty’usability. In Usability Evaluation in Industry; Jordan, P.W., Thomas, B., McClelland, I.L., Weerdmeester, B., Eds.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and evaluation of a user experience questionnaire. In Symposium of the Austrian HCI and Usability Engineering Group; Springer: Berlin, Germany, 2008; pp. 63–76. [Google Scholar]
- Bangor, A.; Kortum, P.; Miller, J. Determining what individual SUS scores mean: Adding an adjective rating scale. J. Usability Stud. 2009, 4, 114–123. [Google Scholar]
- Tullis, T.S.; Stetson, J.N. A comparison of questionnaires for assessing website usability. In Proceedings of the Usability Professional Association Conference, Minneapolis, MN, USA, 7–11 June 2004; Volume 1, pp. 1–12. [Google Scholar]
- Kortum, P.T.; Bangor, A. Usability ratings for everyday products measured with the system usability scale. Int. J. Hum. Comput. Interact. 2013, 29, 67–76. [Google Scholar] [CrossRef]
- Schrepp, M.; Hinderks, A.; Thomaschewski, J. Construction of a Benchmark for the User Experience Questionnaire (UEQ). IJIMAI 2017, 4, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Linneberg, M.S.; Korsgaard, S. Coding qualitative data: A synthesis guiding the novice. Qual. Res. J. 2019, 19, 259–270. [Google Scholar] [CrossRef]
- Zumbach, J. Problem-Based Learning in Österreich: Eine Bestandsaufnahme. In Problem-Based Learning im Dialog (S. 15-25); Mair, M., Brezowar, G., Olswoski, G., Zumbach (Hrsg.), J., Eds.; Facultas: Wien, Austria, 2012. [Google Scholar]
- Riedl, A.; Schelten, A. Kompetenzentwicklung in Lernfeldern im Unterricht Gewerblich-Technischer Schulen; Eusl: Paderborn, Germany, 2013. [Google Scholar]
- Straka, G.A.; Macke, G. Lern-lehr-Theoretische Didaktik; Waxmann Verlag: Münster, Germany, 2002. [Google Scholar]
- Kerres, M.; Bormann, M.; Vervenne, M. Didaktische konzeption von serious games: Zur verknüpfung von spiel-und lernangeboten. MedienPädagogik Zeitschrift für Theorie und Praxis der Medienbildung 2009, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Die Crossmedia-Reihe “Praxisorientiert Ausbilden”. Available online: http://www.kompetenzwerkstatt.net/lernbausteine (accessed on 16 April 2021).
- Drljević, N.; Wong, L.H.; Botički, I. Where does my Augmented Reality Learning Experience (ARLE) belong? A student and teacher perspective to positioning ARLEs. IEEE Trans. Learn. Technol. 2017, 10, 419–435. [Google Scholar] [CrossRef]
- Acosta, J.L.B.; Navarro, S.M.B.; Gesa, R.F.; Kinshuk, K. Framework for designing motivational augmented reality applications in vocational education and training. Australas. J. Educ. Technol. 2019, 35. [Google Scholar] [CrossRef]
- Dick, W.; Carey, L.; Carey, J.O. The Systematic Design of Instruction; Scott Foresman: Glenview, IL, USA, 2005. [Google Scholar]
- Kerres, M. Mediendidaktik: Konzeption und Entwicklung Mediengestützter Lernangebote (4. Überarbeitete Auflage); Olden Bourg: München, Germany, 2013. [Google Scholar]
- Bundesministerium des Inneren Bundesverwaltungsamt. Handbuch für Organisationuntersuchungen und Personalbedarfsermittlung; 2018; Available online: https://www.orghandbuch.de/OHB/DE/ohb_pdf.pdf?__blob=publicationFile&v=29 (accessed on 2 June 2021).
- Anderson, L.W.; Bloom, B.S. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives; Longman: London, UK, 2001. [Google Scholar]
- Miller, G.E. The assessment of clinical skills/competence/performance. Acad. Med. 1990, 65, S63–S67. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.; Lilienthal, A.; Shluzas, L.A.; Masiello, I.; Zary, N. Design of mobile augmented reality in health care education: A theory-driven framework. JMIR Med. Educ. 2015, 1, e4443. [Google Scholar] [CrossRef] [Green Version]
- Fehling, D.; Goertz, L.; Hagenhofer, T. Didaktisches Konzept des Projektes Social Augmented Learning. 2015. Available online: http://www.social-augmented-learning.de/wp-content/uploads/2015/04/SAL_Didaktisches_Konzept_20150409.pdf (accessed on 18 November 2015).
- Willis, J. A recursive, reflective instructional design model based on constructivist-interpretivist theory. Educ. Technol. 1995, 35, 5–23. [Google Scholar]
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Garcia Fracaro, S.; Chan, P.; Gallagher, T.; Tehreem, Y.; Toyoda, R.; Kristel, B.; Jarka, G.; Pfeiffer, T.; Slof, B.; Wachsmuth, S.; et al. Towards Design Guidelines for Virtual Reality Training for the Chemical Industry. Educ. Chem. Eng. 2021. [Google Scholar] [CrossRef]
- Hampshire, A.; Seichter, H.; Grasset, R.; Billinghurst, M. Augmented reality authoring: Generic context from programmer to designer. In Proceedings of the 18th Australia Conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments, Sydney, Australia, 20–24 November 2006; pp. 409–412. [Google Scholar]
- Blattgerste, J.; Renner, P.; Pfeiffer, T. Authorable augmented reality instructions for assistance and training in work environments. In Proceedings of the 18th International Conference on Mobile and Ubiquitous Multimedia, Pisa, Italy, 26–29 November 2019; pp. 1–11. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blattgerste, J.; Luksch, K.; Lewa, C.; Pfeiffer, T. TrainAR: A Scalable Interaction Concept and Didactic Framework for Procedural Trainings Using Handheld Augmented Reality. Multimodal Technol. Interact. 2021, 5, 30. https://doi.org/10.3390/mti5070030
Blattgerste J, Luksch K, Lewa C, Pfeiffer T. TrainAR: A Scalable Interaction Concept and Didactic Framework for Procedural Trainings Using Handheld Augmented Reality. Multimodal Technologies and Interaction. 2021; 5(7):30. https://doi.org/10.3390/mti5070030
Chicago/Turabian StyleBlattgerste, Jonas, Kristina Luksch, Carmen Lewa, and Thies Pfeiffer. 2021. "TrainAR: A Scalable Interaction Concept and Didactic Framework for Procedural Trainings Using Handheld Augmented Reality" Multimodal Technologies and Interaction 5, no. 7: 30. https://doi.org/10.3390/mti5070030