A Comparative Analysis of Circular Economy Index in Urban and Rural Municipalities
Abstract
1. Introduction
- RQ1: Are there statistically significant differences in CE index values between rural and urban municipalities?
- RQ2: What is the nature and strength of the relationships between CE index values and selected socioeconomic and environmental factors?
- RQ3: Which of these factors, if any, significantly predict CE index values in a multivariate model?
- RQ4: Are there underlying dimensions or hidden patterns among the most relevant variables that could explain variance in CE performance across municipalities?
- H1: Urban municipalities score higher on the CE index than rural municipalities.
- H2: Higher population density, higher GDP per capita, and lower unemployment are associated with higher CE index values.
- H3: Lower GHG emissions per capita and a higher share of inventoried forest land are associated with higher CE index values.
- H4: A smaller number of latent factors can explain the relationships between multiple variables and CE index values.
2. Materials and Methods
- Independent samples t-test (n = 43): to examine differences in CE index values between rural and urban municipalities (RQ1, H1). This method was selected as a standard approach for comparing means between two independent groups [53].
- Correlation analysis (Pearson’s and Spearman’s) (n = 42 or n = 43): to assess the strength and direction of bivariate relationships between CE index values and six contextual variables: population density, GDP per capita, unemployment rate, municipal waste per capita, GHG emissions per capita, and share of inventoried forest land (RQ2–RQ3, H2–H3). This method helps to reveal linear associations between variables without causality [54].
- Linear regression analysis (n = 40): to explore which variables significantly predict CE index values when controlling others and to estimate the overall explanatory power of the model (RQ3, H4) [55]. Assumptions regarding normality, homoscedasticity, multicollinearity, and independence of residuals were checked. The Durbin–Watson statistic was used to detect potential autocorrelation, which was minor but statistically significant and noted in the respective results sub-section.
- Principal Component Analysis (PCA) (n = 42): to test whether the selected variables contain hidden patterns that represent distinct contextual dimensions of CE implementation (RQ4, H4). PCA is a dimension-reduction technique used to identify underlying constructs that summarize variance in the data—an increasingly common approach in sustainability research when variables are interrelated [56,57]. PCA was applied only after checking assumptions through the Kaiser–Meyer–Olkin (KMO) measure and Bartlett’s test of sphericity. It did not yield a statistically robust solution due to low sampling adequacy. Nevertheless, its brief application is discussed in the article to maintain transparency and to document the exploratory nature of this part of the research.
- Primary data: CE index values were developed through a structured survey instrument that assessed multiple dimensions of circularity within municipalities. The population consists of the overall CE index values and four sub-indices for all 43 municipalities of Latvia.
- Secondary data: socioeconomic and environmental variables were retrieved from the Official Statistics of Latvia database [58]. These include data on population density, GDP per capita, unemployment rate, municipal waste generation per capita, share of inventoried forest area in total land, and GHG emissions per capita, all collected for the most recent year available (2022 or 2023, depending on the indicator). Exclusion of several anomalous data points is explained in the respective results sub-sections.
- Population density (population per km2) is used as a proxy for infrastructure concentration, shared services, and agglomeration economies that enhance resource efficiency and facilitate recycling and waste management networks. Urban scaling theory and studies on material flows show that higher density supports site reuse and reduced transport distances for waste processing facilities [60,61,62,63].
- GDP per capita (EUR) reflects a municipality’s economic ability to invest in green infrastructure, eco-innovation, and circular business models. Studies across the EU have demonstrated a generally positive relationship between GDP per capita and both recycling performance and ecologically oriented innovation metrics [64,65,66,67,68].
- Unemployment rate (%) captures socioeconomic stress, indicating how effectively labour is engaged in productive or green sectors. Lower unemployment may reflect institutional capacity and community resilience, both of which support CE initiatives, whereas high unemployment may indicate social fragmentation. Research on EU SMEs shows that green employment and environmental expertise are strongly associated with the adoption of resource efficiency practices [69,70,71].
- Generated municipal waste per capita (t) is a direct and tangible measure of material throughput and efficiency that is the core dimension of the CE frameworks. Comparative panel studies in Lithuania and the EU reveal that declining per capita waste is associated with improved municipal waste management and alignment with climate-neutral goals [72,73,74].
- Share of inventoried forests in total area (%) provides insight into natural capital, carbon sequestration capacity, and land use policy context. Although often treated as a static geographic attribute, municipalities influence forest outcomes through zoning, conservation, and resource management. Forests are recognized for carbon sequestration and are relevant to climate neutrality [75,76,77,78].
- GHG emissions (kg of CO2 eq per capita) are a critical outcome metric for the CE, reflecting the goal of decoupling economic activity from carbon intensity. Studies from the Netherlands and Germany highlight the links between CE strategies—such as recycling, reuse, and waste prevention—and reductions in GHG emissions across industrial systems. This factor allows for the exploration of whether circularity-related indicators are associated with and can drive climate neutrality [79,80,81].
3. Results
3.1. Data Review
3.2. Statistical Analysis
3.2.1. Independent Samples t-Test
3.2.2. Correlation Analysis
3.2.3. Regression Analysis
- Unemployment rate was negatively associated with the CE index (β = −0.455, p = 0.050), indicating that higher unemployment corresponds to lower CE performance. This finding supports the interpretation that socioeconomic vulnerability may hinder the institutional or community-level capacity to engage in CE activities.
- Population density demonstrated a positive but statistically nonsignificant association with the CE index (β = 0.300, p = 0.244). Despite the lack of significance in the regression model, this relationship aligns with the earlier correlation analysis and reflects a meaningful trend, i.e., municipalities with higher population density are more likely to perform better in circular economy metrics, possibly due to more efficient infrastructure, access to innovation, and better administrative resources.
3.2.4. PCA Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heshmati, A.; Rashidghalam, M. Assessment of the Urban Circular Economy in Sweden. J. Clean. Prod. 2021, 310, 127475. [Google Scholar] [CrossRef]
- Ghinoi, S.; Silvestri, F.; Spigarelli, F.; Tassinari, M. A Methodological Proposal for Developing a Municipality Indicator of Circular Economy (MICE). Resour. Conserv. Recycl. 2024, 211, 107871. [Google Scholar] [CrossRef]
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Bote Alonso, I.; Montalbán Pozas, B. Following the Circular Economy in European Rural Municipalities through the Spanish Urban Agenda. Ecol. Econ. 2024, 224, 108263. [Google Scholar] [CrossRef]
- Christis, M.; Athanassiadis, A.; Vercalsteren, A. Implementation at a City Level of Circular Economy Strategies and Climate Change Mitigation—The Case of Brussels. J. Clean. Prod. 2019, 218, 511–520. [Google Scholar] [CrossRef]
- Brglez, K.; Perc, M.; Lukman, R.K. The Complexity and Interconnectedness of Circular Cities and the Circular Economy for Sustainability. Sustain. Dev. 2024, 32, 2049–2065. [Google Scholar] [CrossRef]
- Abujder Ochoa, W.A.; Iarozinski Neto, A.; Vitorio Junior, P.C.; Calabokis, O.P.; Ballesteros-Ballesteros, V. The Theory of Complexity and Sustainable Urban Development: A Systematic Literature Review. Sustainability 2025, 17, 3. [Google Scholar] [CrossRef]
- Banzhaf, E.; Anderson, S.; Grandin, G.; Hardiman, R.; Jensen, A.; Jones, L.; Knopp, J.; Levin, G.; Russel, D.; Wu, W.; et al. Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China. Land 2022, 11, 480. [Google Scholar] [CrossRef]
- Sánchez Levoso, A.; Gasol, C.M.; Martínez-Blanco, J.; Durany, X.G.; Lehmann, M.; Gaya, R.F. Methodological Framework for the Implementation of Circular Economy in Urban Systems. J. Clean. Prod. 2020, 248, 119227. [Google Scholar] [CrossRef]
- Abu-Bakar, H.; Charnley, F. Developing a Strategic Methodology for Circular Economy Roadmapping: A Theoretical Framework. Sustainability 2024, 16, 6682. [Google Scholar] [CrossRef]
- Bourdin, S.; Jacquet, N. Closing the Loop at the Local Scale: Investigating the Drivers of and Barriers to the Implementation of the Circular Economy in Cities and Regions. Ecol. Econ. 2025, 231, 108542. [Google Scholar] [CrossRef]
- Ddiba, D.; Andersson, K.; Koop, S.H.A.; Ekener, E.; Finnveden, G.; Dickin, S. Governing the Circular Economy: Assessing the Capacity to Implement Resource-Oriented Sanitation and Waste Management Systems in Low- and Middle-Income Countries. Earth Syst. Gov. 2020, 4, 100063. [Google Scholar] [CrossRef]
- De Pascale, A.; Arbolino, R.; Szopik-Depczyńska, K.; Limosani, M.; Ioppolo, G. A Systematic Review for Measuring Circular Economy: The 61 Indicators. J. Clean. Prod. 2021, 281, 124942. [Google Scholar] [CrossRef]
- Dagilienė, L.; Varaniūtė, V.; Bruneckienė, J. Local Governments’ Perspective on Implementing the Circular Economy: A Framework for FuturIe Solutions. J. Clean. Prod. 2021, 310, 127340. [Google Scholar] [CrossRef]
- Lakatos, E.S.; Yong, G.; Szilagyi, A.; Clinci, D.S.; Georgescu, L.; Iticescu, C.; Cioca, L.-I. Conceptualizing Core Aspects on Circular Economy in Cities. Sustainability 2021, 13, 7549. [Google Scholar] [CrossRef]
- Bals, L.; Taylor, K.M.; Rosca, E.; Ciulli, F. Toward a Circular Supply Chain: The Enabling Role of Information and Financial Flows in Open and Closed Loop Designs. Resour. Conserv. Recycl. 2024, 209, 107781. [Google Scholar] [CrossRef]
- Elustondo, D.; Stocchero, A.; Gaunt, D. A Definition for Circular Bio-Based Cities Based on a Reductionist Metabolic Approach. City Environ. Interact. 2023, 20, 100121. [Google Scholar] [CrossRef]
- Zandvoort, M.; Campos, I.S.; Vizinho, A.; Penha-Lopes, G.; Lorencová, E.K.; van der Brugge, R.; van der Vlist, M.J.; van den Brink, A.; Jeuken, A.B.M. Adaptation Pathways in Planning for Uncertain Climate Change: Applications in Portugal, the Czech Republic and the Netherlands. Environ. Sci. Policy 2017, 78, 18–26. [Google Scholar] [CrossRef]
- Aguado, S.; Cotler, H.; Astier, M.; Padilla-Rivera, A. Evaluation Methodologies for Circular Economy in Municipal Composting and Urban Agriculture: A Literature Review with Focus on Latin America. Circ. Econ. Sust. 2025, 5, 1–26. [Google Scholar] [CrossRef]
- Papageorgiou, A.; Henrysson, M.; Nuur, C.; Sinha, R.; Sundberg, C.; Vanhuyse, F. Mapping and Assessing Indicator-Based Frameworks for Monitoring Circular Economy Development at the City-Level. Sustain. Cities Soc. 2021, 75, 103378. [Google Scholar] [CrossRef]
- Ding, Z.; Hamann, K.T.; Grundmann, P. Enhancing Circular Bioeconomy in Europe: Sustainable Valorization of Residual Grassland Biomass for Emerging Bio-Based Value Chains. Sustain. Prod. Consum. 2024, 45, 265–280. [Google Scholar] [CrossRef]
- Alcalde-Calonge, A.; Sáez-Martínez, F.J.; Ruiz-Palomino, P. Evolution of Research on Circular Economy and Related Trends and Topics. A Thirteen-Year Review. Ecol. Inform. 2022, 70, 101716. [Google Scholar] [CrossRef]
- Leone, R.; La Scalia, G.; Saeli, M. A Critical Review on Reuse Potentials of Wood Waste for Innovative Products and Applications: Trends and Future Challenges. Sustain. Futures 2025, 10, 100869. [Google Scholar] [CrossRef]
- Lund, K.W.; Madsen, E.S. State-of-the-Art Value Chain Roadmap for Sustainable End-of-Life Wind Turbine Blades. Renew. Sustain. Energy Rev. 2024, 192, 114234. [Google Scholar] [CrossRef]
- Kılkış, Ş.; Ulpiani, G.; Vetters, N. Visions for Climate Neutrality and Opportunities for Co-Learning in European Cities. Renew. Sustain. Energy Rev. 2024, 195, 114315. [Google Scholar] [CrossRef]
- Strippoli, R.; Gallucci, T.; Ingrao, C. Circular Economy and Sustainable Development in the Tourism Sector—An Overview of the Truly-Effective Strategies and Related Benefits. Heliyon 2024, 10, e36801. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, M. Going Circular: Unlocking the Potential of Regions and Cities to Drive the Circular Economy Transition. In Regional Studies Policy Impact Books, 1st ed.; Taylor & Francis Group: Oxfordshire, UK, 2025; ISBN 978-1-041-00225-3. [Google Scholar]
- Bolger, K.; Doyon, A. Circular Cities: Exploring Local Government Strategies to Facilitate a Circular Economy. Eur. Plan. Stud. 2019, 27, 2184–2205. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A. How Do Scholars Approach the Circular Economy? A Systematic Literature Review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The Circular Economy: New or Refurbished as CE 3.0?—Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Remeikienė, R.; Gasparėnienė, L.; Bankauskienė, J. Assessment of the Circular Economy Indicators in the EU Member States. Discov. Sustain. 2025, 6, 611. [Google Scholar] [CrossRef]
- Wandl, A.; Dąbrowski, M.; Berruti, G.; Acke, A.; Obersteg, A.; Varjú, V.; Taelman, S.E.; Arlati, A.; Grodzicka-Kowalczyk, M.; Kowalczyk, M. A Holistic Self-Assessment Tool for Circular Economy Transitions in Cities and Regions. Eur. XXI 2024, 44, 15–35. [Google Scholar] [CrossRef]
- Kruse, M.; Wedemeier, J. Quantifying the Circular Economy in European Regions: A Bridge towards Smart Specialisation? REGION 2023, 10, 105–136. [Google Scholar] [CrossRef]
- Paiho, S.; Mäki, E.; Wessberg, N.; Paavola, M.; Tuominen, P.; Antikainen, M.; Heikkilä, J.; Rozado, C.A.; Jung, N. Towards Circular Cities—Conceptualizing Core Aspects. Sustain. Cities Soc. 2020, 59, 102143. [Google Scholar] [CrossRef]
- Panchal, R.; Singh, A.; Diwan, H. Does Circular Economy Performance Lead to Sustainable Development?—A Systematic Literature Review. J. Environ. Manag. 2021, 293, 112811. [Google Scholar] [CrossRef]
- Goyal, S.; Chauhan, S.; Mishra, P. Circular Economy Research: A Bibliometric Analysis (2000–2019) and Future Research Insights. J. Clean. Prod. 2021, 287, 125011. [Google Scholar] [CrossRef]
- Arista, N.I.D.; Handayani, D.; Ernawati, N. Is It Possible to Implement the Same Circular-Economy Concept in Rural and Urban Areas? Study on Willingness to Pay for Household Waste. Sustainability 2023, 15, 5843. [Google Scholar] [CrossRef]
- Golebiewski, J.; Takala, J.; Juszczyk, O.; Drejerska, N. Local Contribution to Circular Economy. A Case Study of a Polish Rural Municipality. Econ. AGRO-Aliment. 2019, 21, 771–791. [Google Scholar] [CrossRef]
- Kanda, W.; Klofsten, M.; Bienkowska, D.; Henry, M.; Hjelm, O. Challenges of Circular New Ventures: An Empirical Analysis of 70 Cases. J. Clean. Prod. 2024, 442, 141103. [Google Scholar] [CrossRef]
- Takacs, F.; Brunner, D.; Frankenberger, K. Barriers to a Circular Economy in Small- and Medium-Sized Enterprises and Their Integration in a Sustainable Strategic Management Framework. J. Clean. Prod. 2022, 362, 132227. [Google Scholar] [CrossRef]
- Sanz-Torró, V.; Calafat-Marzal, C.; Guaita-Martinez, J.M.; Vega, V. Assessment of European Countries’ National Circular Economy Policies. J. Environ. Manag. 2025, 373, 123835. [Google Scholar] [CrossRef]
- Kevin van Langen, S.; Vassillo, C.; Ghisellini, P.; Restaino, D.; Passaro, R.; Ulgiati, S. Promoting Circular Economy Transition: A Study about Perceptions and Awareness by Different Stakeholders Groups. J. Clean. Prod. 2021, 316, 128166. [Google Scholar] [CrossRef]
- Sinha, E. Identifying Enablers and Outcomes of Circular Economy for Sustainable Development: A Systematic Literature Review. Bus. Strategy Dev. 2022, 5, 232–244. [Google Scholar] [CrossRef]
- Patil, R.A.; van Langen, S.K.; Ramakrishna, S. Circularity Assessment: Developing a Comprehensive Yardstick. In Circularity Assessment: Macro to Nano; Patil, R.A., Ramakrishna, S., Eds.; Springer: Singapore, 2023; pp. 3–14. [Google Scholar] [CrossRef]
- Kulakovskaya, A.; Knoeri, C.; Radke, F.; Blum, N.U. Measuring the Economic Impacts of a Circular Economy: An Evaluation of Indicators. Circ. Econ. Sust. 2023, 3, 657–692. [Google Scholar] [CrossRef]
- Bellezoni, R.A.; Adeogun, A.P.; Paes, M.X.; de Oliveira, J.A.P. Tackling Climate Change through Circular Economy in Cities. J. Clean. Prod. 2022, 381, 135126. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, L.; Nie, C. Can Place-Based Policy Reduce Carbon Emissions? Evidence from Industrial Transformation and Upgrading Exemplary Zone in China. Humanit. Soc. Sci. Commun. 2024, 11, 877. [Google Scholar] [CrossRef]
- Schiller, G.; Gao, X.; Lanau, M.; Blum, A.; Zhang, N.; Çıdık, M.S. How Does Space Matter? On the Importance of Embedding Spatialities in Industrial Ecology Frameworks for Circularity in the Built Environment. J. Ind. Ecol. 2025, 29, 645–655. [Google Scholar] [CrossRef]
- Chartier, A.; Pot, W. How to Decide upon Circular Cities: The Role of Evidence in Local Tender Procedures. J. Clean. Prod. 2024, 472, 143449. [Google Scholar] [CrossRef]
- Bianchi, M.; Cordella, M.; Menger, P. Regional Monitoring Frameworks for the Circular Economy: Implications from a Territorial Perspective. Eur. Plan. Stud. 2023, 31, 36–54. [Google Scholar] [CrossRef]
- Arsova, S.; Genovese, A.; Ketikidis, P.H. Implementing Circular Economy in a Regional Context: A Systematic Literature Review and a Research Agenda. J. Clean. Prod. 2022, 368, 133117. [Google Scholar] [CrossRef]
- Atstaja, D.; Liepa, I.; Vembris, A.; Rivza, B.; Osipova, S.; Cudecka-Purina, N. Circular Economy Index: A New Methodology for Evaluating Circularity in Municipalities. Sustainability 2025, 17, 4867. [Google Scholar] [CrossRef]
- Archie, J.W. Statistical analysis of heterozygosity data: Independent sample comparisons. Evolution 1985, 39, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Routledge: New York, NY, USA, 2013; ISBN 978-0-203-77444-1. [Google Scholar]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis. In Wiley Series in Probability and Statistics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-27442-2. [Google Scholar]
- Gray, V. Principal Component Analysis: Methods, Applications and Technology. In Mathematics Research Developments; Nova Science Publishers: Hauppauge, NY, USA, 2017; ISBN 978-1-5361-0911-5. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis. In Springer Series in Statistics; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95442-4. [Google Scholar]
- Central Statistics Bureau Republic of Latvia. Official Statistics of Latvia. Available online: https://stat.gov.lv/en/search (accessed on 24 June 2025).
- The JASP Team. Download JASP 2025, version 0.95.0; University of Amsterdam: Amsterdam, The Netherlands, 2025.
- Magdalena, A.S.; Fernández, B.C.; Callén, Y.F. Financial Performance of New Circular Economy Companies in Rural Settings. Small Bus. Econ. 2025, 64, 1953–1980. [Google Scholar] [CrossRef]
- OECD. The Circular Economy in Cities and Regions of the European Union. In OECD Urban Studies; OECD Publishing: Paris, France, 2025; ISBN 978-92-64-79604-1. [Google Scholar]
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular Economy Innovation and Environmental Sustainability Impact on Economic Growth: An Integrated Model for Sustainable Development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Zhang, N.; Gruhler, K.; Schiller, G. A Review of Spatial Characteristics Influencing Circular Economy in the Built Environment. Environ. Sci. Pollut. Res. Int. 2023, 30, 54280–54302. [Google Scholar] [CrossRef] [PubMed]
- Cialani, C.; Mortazavi, R.; Sarcinella, F. Material Footprint and Circular Economy for a Sustainable Consumption and Production Pattern. Circ. Econ. Sust. 2025, 5, 1–20. [Google Scholar] [CrossRef]
- Andabaka, A.; Sertić, M.B.; Harc, M. Eco-Innovation and Economic Growth in the European Union. Zagreb. Int. Rev. Econ. Bus. 2019, 22, 43–54. [Google Scholar] [CrossRef]
- Georgescu, L.P.; Fortea, C.; Antohi, V.M.; Balsalobre-Lorente, D.; Zlati, M.L.; Barbuta–Misu, N. Economic, Technological and Environmental Drivers of the Circular Economy in the European Union: A Panel Data Analysis. Environ. Sci. Eur. 2025, 37, 76. [Google Scholar] [CrossRef]
- Radivojević, V.; Rađenović, T.; Dimovski, J. The Role of Circular Economy in Driving Economic Growth: Evidence from EU Countries. SAGE Open 2024, 14, 21582440241240624. [Google Scholar] [CrossRef]
- D’Adamo, I.; Daraio, C.; Di Leo, S.; Gastaldi, M.; Rossi, E.N. Driving EU Sustainability: Promoting the Circular Economy through Municipal Waste Efficiency. Sustain. Prod. Consum. 2024, 50, 462–474. [Google Scholar] [CrossRef]
- Nademi, Y.; Sedaghat Kalmarzi, H. Breaking the Unemployment Cycle Using the Circular Economy: Sustainable Jobs for Sustainable Futures. J. Clean. Prod. 2025, 488, 144655. [Google Scholar] [CrossRef]
- de Andrade, R.D.; Benfica, V.C.; de Oliveira, H.V.E.; Suchek, N. Investigating Green Jobs and Sustainability in SMEs: Beyond Business Operations. J. Clean. Prod. 2025, 486, 144477. [Google Scholar] [CrossRef]
- Bassi, F.; Guidolin, M. Resource Efficiency and Circular Economy in European SMEs: Investigating the Role of Green Jobs and Skills. Sustainability 2021, 13, 12136. [Google Scholar] [CrossRef]
- Bobinaite, V.; Naujokas, G. Effectiveness of Municipal Waste Collection and Management Policy in Lithuania. Sustainability 2025, 17, 4623. [Google Scholar] [CrossRef]
- Maalouf, A.; Mavropoulos, A. Re-Assessing Global Municipal Solid Waste Generation. Waste Manag. Res. 2023, 41, 936–947. [Google Scholar] [CrossRef]
- Laureti, L.; Costantiello, A.; Anobile, F.; Leogrande, A.; Magazzino, C. Waste Management and Innovation: Insights from Europe. Recycling 2024, 9, 82. [Google Scholar] [CrossRef]
- Lazaridou, D.C.; Michailidis, A.; Trigkas, M. Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. Forests 2021, 12, 436. [Google Scholar] [CrossRef]
- Köhl, M.; Martes, L.M. Forests: A Passive CO2 Sink or an Active CO2 Pump? For. Policy Econ. 2023, 155, 103040. [Google Scholar] [CrossRef]
- Kocoglu, M.; Nghiem, X.-H.; Barak, D.; Bruna, K.; Jahanger, A. Can Forests Realize the Carbon Neutrality Dream? Evidence from a Global Sample. J. Environ. Manag. 2024, 366, 121827. [Google Scholar] [CrossRef] [PubMed]
- Psistaki, K.; Tsantopoulos, G.; Paschalidou, A.K. An Overview of the Role of Forests in Climate Change Mitigation. Sustainability 2024, 16, 6089. [Google Scholar] [CrossRef]
- Del Borghi, A.; Gallo, M.; Silvestri, N.; Baccelli, O.; Croci, E.; Molteni, T. Impact of Circular Measures to Reduce Urban CO2 Emissions: An Analysis of Four Case Studies through a Production- and Consumption-Based Emission Accounting Method. J. Clean. Prod. 2022, 380, 134932. [Google Scholar] [CrossRef]
- Knäble, D.; de Quevedo Puente, E.; Pérez-Cornejo, C.; Baumgärtler, T. The Impact of the Circular Economy on Sustainable Development: A European Panel Data Approach. Sustain. Prod. Consum. 2022, 34, 233–243. [Google Scholar] [CrossRef]
- Hailemariam, A.; Erdiaw-Kwasie, M.O. Towards a Circular Economy: Implications for Emission Reduction and Environmental Sustainability. Bus. Strategy Environ. 2023, 32, 1951–1965. [Google Scholar] [CrossRef]
- Saeima. Law on Administrative Territories and Populated Areas. Available online: https://likumi.lv/ta/en/en/id/315654-law-on-administrative-territories-and-populated-areas (accessed on 24 June 2025).
- CSB. Gross Domestic Product and Gross Value Added by Region, State City and Municipality at Current Prices, (Thousand Euro) 2000–2022. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__VEK__IK__IKR/IKR060/table/tableViewLayout1/ (accessed on 24 June 2025).
- CSB. Activity Rate, Employment Rate and Unemployment Rate by Gender and Age Group in Regions, State Cities and Municipalities at the Beginning of the Year (Per Cent) 2021–2024. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__EMP__NBB__NBA/EKA140/table/tableViewLayout1/ (accessed on 24 June 2025).
- Carter, T.J. Urban Productivity, Urban Unemployment, and Labor Market Policies. Reg. Sci. Urban. Econ. 1998, 28, 329–344. [Google Scholar] [CrossRef]
- CSB. Usually Resident Population Density in Regions, Cities and Towns, Municipalities, and Rural Territories, at the Beginning of Year 2022–2025. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__POP__IR__IRD/IRD062/table/tableViewLayout1/ (accessed on 24 June 2025).
- CSB. Waste Generation in Businesses by State City and Municipality (Tonnes) 2021–2023. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__ENV__AK__AKB/AKB050/table/tableViewLayout1/ (accessed on 24 June 2025).
- CSB. Population at the Beginning of Year and Population Change and Key Vital Statistics in Regions, Cities, Towns and Municipalities 2012–2025. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__POP__IR__IRS/IRS031/table/tableViewLayout1/ (accessed on 24 June 2025).
- Eurostat. Municipal Waste Generated per Person in the EU. Available online: https://www.voronoiapp.com/other/Municipal-waste-generated-per-person-in-the-EU-4068 (accessed on 9 July 2025).
- CSB. Share of Inventoried Forests in Total Land Area and Standing Timber Density in Regions, State Cities and Municipalities 2019–2024. Available online: https://data.stat.gov.lv:443/pxweb/en/OSP_PUB/START__NOZ__ME__MEP/MEP063/ (accessed on 6 July 2025).
- CSB. Greenhouse Gas Emissions in Regions, State Cities and Municipalities 2020–2023. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__ENV__GP__GPE/GPE020/ (accessed on 24 June 2025).
- European Commission. Forests, Forestry and Logging. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging (accessed on 9 July 2025).
- Eurostat. EU Greenhouse Gas Footprint: 10.7 Tonnes per Capita. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250219-1?utm_source=chatgpt.com (accessed on 9 July 2025).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013; ISBN 978-0-203-77158-7. [Google Scholar]
- Manolchev, C.; Cherrington, R.; Crabolu, G. Untangling Circularity: Transitioning to a Regional Circular Economy in the Clothing and Textile Sector in England. J. Clean. Prod. 2024, 482, 144188. [Google Scholar] [CrossRef]
t | df | p | Cohen’s d | SE Cohen’s d | |
---|---|---|---|---|---|
CE index | −2.865 | 41 | 0.007 | −1.184 | 0.436 |
CE sub-index: Resource Management | −2.602 | 41 | 0.013 | −1.075 | 0.432 |
CE sub-index: Economic/business transformation | −2.626 | 41 | 0.012 | −1.085 | 0.432 |
CE sub-index: Public Engagement | −2.356 | 41 | 0.023 | −0.973 | 0.429 |
CE sub-index: Efficient Management | −2.790 | 41 | 0.008 | −1.152 | 0.435 |
Variables | CE Index | ||||
---|---|---|---|---|---|
n | Pearson’s r | p-Value | Spearman’s Rho | p-Value | |
1. Population density, population per km2, at the beginning of 2024 | 43 | 0.344 * | 0.024 | 0.311 * | 0.042 |
2. GDP per capita, EUR, 2022 | 43 | 0.220 | 0.157 | 0.334 * | 0.029 |
3. Unemployment rate, %, 2023 | 43 | −0.285 | 0.064 | −0.071 | 0.652 |
4. Generated municipal waste per capita, t, 2023 | 42 | −0.105 | 0.507 | −0.085 | 0.593 |
5. Share of inventoried forests in total land area, 2023 | 43 | −0.256 | 0.097 | −0.220 | 0.155 |
6. GHG emissions, kg of CO2 eq per capita, 2023 | 42 | −0.122 | 0.440 | −0.118 | 0.456 |
Variables | CE Index | ||||
---|---|---|---|---|---|
n | Pearson’s r | p-Value | Spearman’s Rho | p-Value | |
1. Population density, population per km2, at the beginning of 2024 | 36 | −0.051 | 0.766 | 0.111 | 0.521 |
2. GDP per capita, EUR, 2022 | 36 | 0.196 | 0.251 | 0.297 | 0.079 |
3. Unemployment rate, %, 2023 | 36 | −0.356 * | 0.033 | −0.144 | 0.401 |
4. Generated municipal waste per capita, t, 2023 | 35 | −0.006 | 0.974 | 0.029 | 0.869 |
5. Share of inventoried forests in total land area, 2023 | 36 | −0.006 | 0.972 | −0.037 | 0.830 |
6. GHG emissions, kg of CO2 eq per capita, 2023 | 35 | 0.153 | 0.379 | 0.096 | 0.581 |
Model Summary—CE index | |||||||||
Model | R2 | Adjusted R2 | F Change | df1 | df2 | p | Durbin–Watson | ||
Auto-Correlation | Statistic | p | |||||||
M1 | 0.244 | 0.111 | 1.832 | 6 | 34 | 0.122 | −0.388 | 2.734 | 0.020 |
Coefficients | |||||||||
Model—M1 | Unstandardized | Standard Error | Standardized (β) | t | p | ||||
(Intercept) | 468.157 | 49.091 | 9.537 | <0.001 | |||||
Population density, population per km2, at the beginning of 2024 | 0.025 | 0.021 | 0.300 | 1.187 | 0.244 | ||||
GDP per capita, EUR, 2022 | −5.669 × 10−4 | 0.001 | −0.077 | −0.391 | 0.698 | ||||
Unemployment rate, %, 2023 | −5.599 | 2.506 | −0.455 | −2.235 | 0.050 | ||||
Generated municipal waste per capita, t, 2023 | −4.171 | 5.047 | −0.140 | −0.827 | 0.414 | ||||
Share of inventoried forests in total land area, 2023 | −60.637 | 61.704 | −0.210 | −0.983 | 0.333 | ||||
GHG emissions, kg of CO2 eq per capita, 2023 | 0.006 | 0.005 | 0.272 | 1.301 | 0.202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liepa, I.; Atstaja, D. A Comparative Analysis of Circular Economy Index in Urban and Rural Municipalities. Urban Sci. 2025, 9, 321. https://doi.org/10.3390/urbansci9080321
Liepa I, Atstaja D. A Comparative Analysis of Circular Economy Index in Urban and Rural Municipalities. Urban Science. 2025; 9(8):321. https://doi.org/10.3390/urbansci9080321
Chicago/Turabian StyleLiepa, Inga, and Dzintra Atstaja. 2025. "A Comparative Analysis of Circular Economy Index in Urban and Rural Municipalities" Urban Science 9, no. 8: 321. https://doi.org/10.3390/urbansci9080321
APA StyleLiepa, I., & Atstaja, D. (2025). A Comparative Analysis of Circular Economy Index in Urban and Rural Municipalities. Urban Science, 9(8), 321. https://doi.org/10.3390/urbansci9080321