Energy, Urbanisation and Carbon Footprint: Evidence from Western Balkan Countries
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Special Report Global Warming of 1.5 °C. 2018. Available online: https://www.ipcc.ch/sr15 (accessed on 15 September 2024).
- International Energy Agency (IEA). 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 22 July 2024).
- United Nations Framework Convention on Climate Change. 2023. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 10 January 2025).
- Ramanathan, R. Combining indicators of energy consumption and CO2 emissions: A cross-country comparison. Int. J. Glob. Energy 2002, 17, 214–227. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sust. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Gu, W.; Zhao, X.; Yan, X.; Wang, C.; Li, Q. Energy technological progress, energy consumption, and CO2 emissions: Empirical evidence from China. J. Clean. Prod. 2019, 236, 117666. [Google Scholar] [CrossRef]
- Obradović, S.; Lojanica, N. What was done under the Argentine Sun: An econometric study of environmental quality along with economic growth and financial development. Air Qual. Atmos. Health 2023, 16, 567–582. [Google Scholar] [CrossRef]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Garschagen, M.; Romero-Lankao, P. Exploring the relationships between urbanisation trends and climate change vulnerability. Clim. Change 2015, 133, 37–52. [Google Scholar] [CrossRef]
- Cheng, Z.; Hu, X. The effects of urbanisation and urban sprawl on CO2 emissions in China. Environ. Dev. Sustain. 2023, 25, 1792–1808. [Google Scholar] [CrossRef]
- Liu, H.; Wong, W.K.; Cong, P.T.; Nassani, A.A.; Haffar, M.; Abu-Rumman, A. Linkage among Urbanization, energy consumption, economic growth and carbon emissions. Panel data analysis for China using ARDL model. Fuel 2023, 332, 126122. [Google Scholar] [CrossRef]
- Kuldasheva, Z.; Salahodjaev, R. Renewable energy and CO2 emissions: Evidence from rapidly urbanising countries. J. Knowl. Econ. 2023, 14, 1077–1090. [Google Scholar] [CrossRef]
- Tawfeeq, M. The spillover impacts of urbanisation and energy usage on CO2 emissions: A regional analysis in the United States. Energy Explor. Exploit. 2023, 41, 1484–1499. [Google Scholar] [CrossRef]
- Khan, Y.; Khan, M.A.; Zafar, S. Dynamic linkages among energy consumption, urbanisation and ecological footprint: Empirical evidence from NARDL approach. Manag. Environ. Qual. 2023, 34, 1534–1554. [Google Scholar] [CrossRef]
- Bretschger, L. Green road is open: Economic pathway with a carbon price escalator. J. Environ. Econ. Manag. 2024, 127, 103033. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-Garmsir, A.R.; Allam, Z.; Asadzadeh, A. Progress and prospects in planning: A bibliometric review of literature in Urban Studies and Regional and Urban Planning, 1956–2022. Prog. Plan. 2023, 173, 100740. [Google Scholar] [CrossRef]
- Koomen, E.; van Bemmel, M.S.; van Huijstee, J.; Andrée, B.P.J.; Ferdinand, P.A.; van Rijn, F.J.A. An integrated global model of local urban development and population change. Comput. Environ. Urban Syst. 2023, 100, 101935. [Google Scholar] [CrossRef]
- Qi, F.; Abu-Rumman, A.; Al Shraah, A.; Muda, I.; Huerta-Soto, R.; Hai Yen, T.T.; Abdul-Samad, Z.; Michel, M. Moving a step closer towards environmental sustainability in Asian countries: Focusing on real income, urbanisation, transport infrastructure, and research and development. Econ. Res.-Ekon. Istraz. 2023, 36, 2111317. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, D.; Zhang, J.; Wang, Y.; Sun, D. Does urbanisation have spatial spillover effect on poverty reduction: Empirical evidence from rural China. Econ. Res.-Ekon. Istraz. 2023, 36, 2167730. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, M.; Zhang, Y.; Feng, Y. How does urbanisation affect public health? New evidence from 175 countries worldwide. Front. Public Health 2023, 10, 1096964. [Google Scholar] [CrossRef]
- Young, J.; Macura, A. Forging Local Energy Transition in the Most Carbon-Intensive European Region of the Western Balkans. Energies 2023, 16, 2077. [Google Scholar] [CrossRef]
- Mitić, P.; Fedajev, A.; Radulescu, M.; Rehman, A. The relationship between CO2 emissions, economic growth, available energy, and employment in SEE countries. Environ. Sci. Pollut. Res. 2023, 30, 16140–16155. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme. 2019. Available online: https://www.unep.org/news-and-stories/press-release/air-pollution-responsible-one-five-premature-deaths-19-western (accessed on 18 September 2024).
- Marz, W.; Şen, S. Does telecommuting reduce commuting emissions? J. Environ. Econ. Manag. 2022, 116, 102746. [Google Scholar] [CrossRef]
- Wu, J.; Segerson, K.; Wang, C. Is environmental regulation the answer to pollution problems in urbanising economies? J. Environ. Econ. Manag. 2023, 117, 102754. [Google Scholar] [CrossRef]
- Yuan, B.; Ren, S.; Chen, X. The effects of urbanisation, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis. Appl. Energy 2015, 140, 94–106. [Google Scholar] [CrossRef]
- He, Z.; Xu, S.; Shen, W.; Long, R.; Chen, H. Impact of urbanisation on energy related CO2 emission at different development levels: Regional difference in China based on panel estimation. J. Clean. Prod. 2017, 140, 1719–1730. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanisation affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Muzaffar, A.T.; Ahmed, K.; Jabran, M.A. How urbanisation affects CO2 emissions in Malaysia? The application of STIRPAT model. Renew. Sustain. Energy Rev. 2016, 57, 83–93. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, Z.; Zhang, H.; Tan, T.D. The impact of economic growth, industrial structure and urbanisation on carbon emission intensity in China. Nat. Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Andersson, F.N.; Karpestam, P. CO2 emissions and economic activity: Short-and long-run economic determinants of scale, energy intensity and carbon intensity. Energy Policy 2013, 61, 1285–1294. [Google Scholar] [CrossRef]
- Liddle, B.; Lung, S. Age-structure, urbanisation, and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Popul. Environ. 2010, 31, 317–343. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impacts of urbanisation and industrialisation on energy consumption/CO2 emissions: Does the level of development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanisation lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Kubota, J. The relationship between urbanisation, energy use and carbon emissions: Evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 2016, 112, 1368–1374. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Zhao, D. Environmental Kuznets curve in China: New evidence from dynamic panel analysis. Energy Policy 2016, 91, 138–147. [Google Scholar] [CrossRef]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanisation and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y. Panel estimation for urbanisation, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Ponce de Leon Barido, D.; Marshall, J.D. Relationship between urbanisation and CO2 emissions depends on income level and policy. Environ. Sci. Technol. 2014, 48, 3632–3639. [Google Scholar] [CrossRef]
- Sharma, S.S. Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Appl. Energy 2011, 88, 376–382. [Google Scholar] [CrossRef]
- Saidi, K.; Mbarek, M.B. The impact of income, trade, urbanisation, and financial development on CO2 emissions in 19 emerging economies. Environ. Sci. Pollut. Res. 2017, 24, 12748–12757. [Google Scholar] [CrossRef]
- Ali, H.S.; Abdul-Rahim, A.S.; Ribadu, M.B. Urbanization and carbon dioxide emissions in Singapore: Evidence from the ARDL approach. Environ. Sci. Pollut. Res. 2017, 24, 1967–1974. [Google Scholar] [CrossRef] [PubMed]
- World Bank. World Development Indicators. 2023. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 24 May 2024).
- U.S. Energy Information Administration. 2023. Available online: https://www.eia.gov/international/data (accessed on 24 May 2024).
- Bas, E.; Egrioglu, E.; Yolcu, U. Bootstrapped Holt Method with Autoregressive Coefficients Based on Harmony Search Algorithm. Forecasting 2021, 3, 839–849. [Google Scholar] [CrossRef]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. Empir. Econ. 2004, 60, 13–50. [Google Scholar] [CrossRef]
- De Hoyos, R.E.; Sarafidis, V. Testing for cross-sectional dependence in panel-data models. Stata J. 2006, 6, 482–496. [Google Scholar] [CrossRef]
- Eibinger, T.; Deixelberger, B.; Manner, H. Panel data in environmental economics: Econometric issues and applications to IPAT models. J. Environ. Econ. Manag. 2024, 125, 102941. [Google Scholar] [CrossRef]
- Breusch, T.; Pagan, A. The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Baltagi, B.H. Econometric Analysis of Panel Data, 4th ed.; Wiley: Chichester, UK, 2008. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Phillips, P.C.; Hansen, B.E. Statistical inference in instrumental variables regression with I(1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Pedroni, P. Purchasing power parity tests in cointegrated panels. Rev. Econ. Stat. 2001, 83, 727–731. [Google Scholar] [CrossRef]
- Mark, N.C.; Sul, D. Cointegration vector estimation by panel DOLS and long-run money demand. Oxf. Bull. Econ. Stat. 2003, 65, 655–680. [Google Scholar] [CrossRef]
- Gasimli, O.; Haq, I.U.; Gamage, S.K.N.; Prasanna, R.P.I.R.; Khattak, Z.Z.; Abbas, A. Energy, environmental degradation, and health status: Evidence from South Asia. Environ. Sci. Pollut. Res. 2023, 30, 13639–13647. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Empirical study of the environmental Kuznets curve and environmental sustainability curve hypothesis for Australia, China, Ghana and USA. J. Clean. Prod. 2018, 201, 98–110. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Choi, I. Unit root tests for panel data. J. Int. Money Financ. 2001, 20, 249–272. [Google Scholar] [CrossRef]
- Hadri, K. Testing for stationarity in heterogeneous panel data. Econom. J. 2000, 3, 148–161. [Google Scholar] [CrossRef]
- Sheikh, U.A.; Tabash, M.I.; Asad, M. Global financial crisis in effecting asymmetrical cointegration between exchange rate and stock indexes of South Asian region: Application of panel data NARDL and ARDL modelling approach with asymmetrical granger causility. Cogent Bus. Manag. 2020, 7, 1843309. [Google Scholar] [CrossRef]
- Amin, A.; Liu, Y.; Yu, J.; Chandio, A.A.; Rasool, S.F.; Luo, J.; Zaman, S. How does energy poverty affect economic development? A panel data analysis of South Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 31623–31635. [Google Scholar] [CrossRef] [PubMed]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Osuntuyi, B.V.; Lean, H.H. Environmental degradation, economic growth, and energy consumption: The role of education. Sustain. Dev. 2023, 31, 1166–1177. [Google Scholar] [CrossRef]
- Mohammadi, H.; Saghaian, S.; Zandi Dareh Gharibi, B. Renewable and non-renewable energy consumption and its impact on economic growth. Sustainability 2023, 15, 3822. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Zhang, S. A regional analysis of the urbanisation-energy-economy-emissions nexus in China: Based on the environmental Kuznets curve hypothesis. Appl. Econ. 2023, 55, 5287–5302. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmad, M.; Murshed, M.; Vaseer, A.; Kirikkaleli, D. The trade-off between energy consumption, economic growth, militarisation, and CO2 emissions: Does the treadmill of destruction exist in the modern world? Environ. Sci. Pollut. Res. 2022, 29, 18063–18076. [Google Scholar] [CrossRef]
- Ali, M.; Kirikkaleli, D.; Altuntaş, M. The nexus between CO2 intensity of GDP and environmental degradation in South European countries. Environ. Dev. Sustain. 2023, 26, 11089–11100. [Google Scholar] [CrossRef]
- Cui, L.; Hunt, A.; Morley, B. The effectiveness of environmental spending in China and the environmental Kuznets curve. Sustainability 2021, 13, 12141. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Du, M.; Huang, C.; Liao, L. Trade liberalisation and energy efficiency: Quasi-natural experiment evidence from the pilot free trade zones in China. Econ. Anal. Policy 2025, 85, 1739–1751. [Google Scholar] [CrossRef]
Abbreviation | Variable | Description | Sources (2023) |
---|---|---|---|
CO2 | Carbon emissions | CO2 Emissions (metric tons per capita) | WDI |
GDP | Economic Growth | GDP per capita (current US$) | |
URB | Urbanisation | Urban population (% of the total population) | |
ENC | Energy consumption | Total energy consumption in quadrillion Btu | EIA |
Variable | Carbon Dioxide Emissions (CO2) | Energy Consumption (ENC) | Economic Growth (GDP) | Urbanisation (URB) |
---|---|---|---|---|
Mean | 4.230 | 0.235 | 5057.393 | 55.387 |
Median | 4.078 | 0.116 | 5003.073 | 56.434 |
Max. | 7.704 | 0.700 | 9893.516 | 68.164 |
Min. | 1.056 | 0.038 | 1281.660 | 42.435 |
Std. Dev. | 1.830 | 0.229 | 1995.158 | 6.856 |
Skewness | 0.009 | 1.271 | 0.110 | −0.171 |
Kurtosis | 1.902 | 2.945 | 2.522 | 2.185 |
VIF | / | 1.41 | 1.02 | 1.38 |
Test | Statistic | p-Value |
---|---|---|
Breusch-Pagan LM | 65.050 *** | 0.000 |
Pesaran scaled LM | 11.191 *** | 0.000 |
Pesaran CD | 2.413 ** | 0.015 |
Friedman | 13.753 *** | 0.008 |
Variable | IPS | CIPS | CADF |
---|---|---|---|
Statistic | Statistic | Statistic | |
Ln CO2 | −0.674 | −2.752 *** | −1.893 |
LnGDP | −3.302 *** | −2.055 | −1.644 |
LnURB | 3.167 | −1.513 | −2.290 |
LnENC | −1.892 ** | −2.107 | −1.743 |
∆ Ln CO2 | −5.976 *** | −5.588 *** | −3.731 *** |
∆ LnGDP | −3.492 *** | −4.404 *** | −2.363 * |
∆ LnURB | −16.988 *** | −2.115 | −2.777 ** |
∆ LnENC | −6.553 *** | −4.743 *** | −3.174 *** |
Tests | Statistic | p-Value | Weighted Statistic | p-Value |
---|---|---|---|---|
Panel v-Statistic | −0.664 | 0.746 | −0.819 | 0.793 |
Panel rho-Statistic | −0.717 | 0.236 | −0.838 | 0.200 |
Panel PP-Statistic | −3.131 *** | 0.000 | −3.537 *** | 0.000 |
Panel ADF-Statistic | −2.177 ** | 0.014 | −2.571 *** | 0.005 |
Group rho-Statistic | 0.339 | 0.632 | ||
Group PP-Statistic | −2.781 *** | 0.002 | ||
Group ADF-Statistic | −2.083 ** | 0.018 |
Hypothesised No. of CE(s) | Fisher Stat. (from Trace Test) | p-Value | Fisher Stat. (from Max-Eigen Test) | p-Value |
---|---|---|---|---|
None | 96.50 *** | 0.000 | 58.55 *** | 0.000 |
At most 1 | 49.41 *** | 0.000 | 25.38 *** | 0.004 |
At most 2 | 35.85 *** | 0.000 | 21.19 ** | 0.019 |
At most 3 | 32.93 *** | 0.000 | 32.93 *** | 0.000 |
Long-Run Analysis | ||||
---|---|---|---|---|
Variable | Coefficient | Std. Error | t-Statistic | p-Value |
LnENC | 0.423 *** | 0.100 | 4.195 | 0.000 |
LnGDP | 0.079 * | 0.045 | 1.731 | 0.087 |
LnURB | 3.188 *** | 0.541 | 5.888 | 0.000 |
Short-Run Analysis | ||||
ECT(−1) | −0.597 *** | 0.195 | −3.060 | 0.003 |
∆ LnENC | 0.298 | 0.199 | 1.497 | 0.138 |
∆ LnGDP | 0.169 *** | 0.037 | 4.475 | 0.000 |
∆ LnURB | 11.258 | 19.681 | 0.572 | 0.568 |
Constant | −6.403 *** | 2.352 | −2.721 | 0.007 |
Country | Variable | Coefficient | t-Statistic | p-Value |
---|---|---|---|---|
Albania | ECT(−1) | −1.159 *** | −50.661 | 0.000 |
∆ LnENC | −0.357 *** | −37.209 | 0.000 | |
∆ LnGDP | 0.275 *** | 23.225 | 0.000 | |
∆ LnURB | 83.757 | 0.247 | 0.820 | |
Constant | −14.029 | −1.591 | 0.209 | |
Bosnia and Herzegovina | ECT(−1) | −0.140 *** | −11.766 | 0.001 |
∆ LnENC | 0.194 *** | 9.226 | 0.002 | |
∆ LnGDP | 0.241 *** | 14.748 | 0.000 | |
∆ LnURB | −25.976 | −0.039 | 0.970 | |
Constant | −1.104 | −1.000 | 0.390 | |
North Macedonia | ECT(−1) | −0.268 *** | −7.931 | 0.004 |
∆ LnENC | 0.596 ** | 4.243 | 0.024 | |
∆ LnGDP | 0.076 ** | 3.106 | 0.053 | |
∆ LnURB | −7.768 | −0.124 | 0.909 | |
Constant | −2.685 | −0.818 | 0.473 | |
Serbia | ECT(−1) | −0.480 *** | −18.399 | 0.000 |
∆ LnENC | 0.813 *** | 10.265 | 0.002 | |
∆ LnGDP | 0.137 *** | 23.070 | 0.000 | |
∆ LnURB | 20.616 | 0.112 | 0.917 | |
Constant | −4.899 | −1.495 | 0.231 | |
Montenegro | ECT(−1) | −0.937 *** | −15.349 | 0.000 |
∆ LnENC | 0.246 ** | 3.303 | 0.045 | |
∆ LnGDP | 0.118 ** | 5.179 | 0.014 | |
∆ LnURB | −14.337 | −0.296 | 0.786 | |
Constant | −9.300 | −0.966 | 0.405 |
FMOLS | DOLS Lags 1 (2) | |||||
---|---|---|---|---|---|---|
Variables | Coefficient | t-Statistic | p-Value | Coefficient | t-Statistic | p-Value |
LnENC | 0.613 *** | 7.289 | 0.000 | 0.665 ** (0.833 ***) | 1.972 (4.32) | 0.055 0.00 |
LnGDP | 0.186 *** | 5.595 | 0.000 | 0.172 ** (0.194 **) | 2.095 1.997 | 0.042 0.049 |
LnURB | 5.252 ** | 2.128 | 0.035 | 2.554 ** 2.835 *** | 2.307 3.05 | 0.026 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obradović, S.; Gričar, S.; Bojnec, Š.; Lojanica, N. Energy, Urbanisation and Carbon Footprint: Evidence from Western Balkan Countries. Urban Sci. 2025, 9, 119. https://doi.org/10.3390/urbansci9040119
Obradović S, Gričar S, Bojnec Š, Lojanica N. Energy, Urbanisation and Carbon Footprint: Evidence from Western Balkan Countries. Urban Science. 2025; 9(4):119. https://doi.org/10.3390/urbansci9040119
Chicago/Turabian StyleObradović, Saša, Sergej Gričar, Štefan Bojnec, and Nemanja Lojanica. 2025. "Energy, Urbanisation and Carbon Footprint: Evidence from Western Balkan Countries" Urban Science 9, no. 4: 119. https://doi.org/10.3390/urbansci9040119
APA StyleObradović, S., Gričar, S., Bojnec, Š., & Lojanica, N. (2025). Energy, Urbanisation and Carbon Footprint: Evidence from Western Balkan Countries. Urban Science, 9(4), 119. https://doi.org/10.3390/urbansci9040119