Integrating Urban Tree Carbon Sequestration into Metropolitan Ecosystem Services for Climate-Neutral Cities: A Citizen Science-Based Methodology
Abstract
1. Introduction
2. Materials and Methods
- Manual method: DBH is measured with a flexible measuring tape, and total tree height is determined either using mobile applications designed for measuring heights or through basic trigonometry based on similarity ratios.
- Mobile application method: The GreenGuard app (https://play.google.com/store/apps/details?id=com.alteraid.males_herbes&hl=es_AR accessed on 2 November 2025), developed by the Technical University of Catalonia (UPC-BarcelonaTECH) for this initiative, geolocates the tree, automatically records DBH and total height, and stores the results together with calculated CO2 accumulation in an open-access database.
- To quantify the CO2 stored in Viladecans’ urban trees and annually monitor the amount captured, providing essential data for assessing progress toward climate neutrality.
- To generate species-specific and canopy-size-specific sequestration estimates, thereby offering a tool to improve urban planning and prioritize green infrastructure.
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar]
- World Bank. World Development Report 2021: Data for Better Lives; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- UN-Habitat; UNESCO Chair on Urban Resilience (University of Southern Denmark); Global Covenant of Mayors for Climate & Energy. Urban Climate Action—The Urban Content of the NDCs: Global Review 2022; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2023; Available online: https://unhabitat.org/urban-climate-action-the-urban-content-of-the-ndcs-global-review-2022 (accessed on 5 November 2025).
- European Commission. Europe’s 2040 Climate Pathway: A Path to Climate Neutrality by 2050; (Publication No. NA-02-24-147-EN-N); Directorate-General for Communication: Brussels, Belgium, 2024. [Google Scholar]
- European Commission; Directorate-General for Research and Innovation. EU Missions, 100 Climate-Neutral and Smart Cities; (Publication No. KI-02-24-237-EN-N); Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Mazzucato, M. Mission-Oriented Research & Innovation in the European Union: A Problem-Solving Approach to Fuel Innovation-Led Growth; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Rosenzweig, C.; Solecki, W.; Hammer, S.A.; Mehrotra, S. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network (UCCRN); Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Stephan, P.; Andersson, E.; Barbara, A.; Arjen, B.; Dagmar, H.; Rieke, H.; Kowarik, H.; Stahl Olafsson, A.; Van der Jagt, S. Urban green infrastructure—Connecting people and nature for sustainable cities. Urban Green. 2019, 40, 1–3. [Google Scholar]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Frantzeskaki, N.; Hansen, R. Implementing nature-based solutions for creating a sustainable urban future. Nat. Clim. Change 2016, 6, 730–733. [Google Scholar]
- Mazon, J. 5-E Levers: A New Conceptual Model for Achieving Carbon Neutrality in Cities. Sustainability 2024, 16, 1678. [Google Scholar] [CrossRef]
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; den Elzen, M.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 2017, 7, 220–226. [Google Scholar] [CrossRef]
- Tagesson, T.; Schurgers, G.; Horion, S.; Ciais, P.; Tian, F.; Brandt, M.; Ahlström, A.; Wigneron, J.-P.; Ardö, J.; Olin, S.; et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 2020, 4, 202–209. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Conchedda, G.; Wanner, N.; Federici, S.; Rossi, S.; Grassi, G. Carbon emissions and removals from forests: New estimates, 1990–2020. Earth Syst. Sci. Data 2021, 13, 1681–1691. [Google Scholar] [CrossRef]
- Gasser, T.; Crepin, L.; Quilcaille, Y.; Houghton, R.A.; Ciais, P.; Obersteiner, M. Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences 2020, 17, 4075–4101. [Google Scholar] [CrossRef]
- Luyssaert, S.; Schulze, E.-D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Steenberg, J.W.N.; Ristow, M.; Duinker, P.N.; Lapointe-Elmrabti, L.; MacDonald, J.D.; Nowak, D.J.; Pasher, J.; Flemming, C.; Samson, C. A national assessment of urban forest carbon storage and sequestration in Canada. Carbon Balance Manag. 2023, 18, 11. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Pasher, J.; McGovern, M.; Khoury, M.; Duffe, J. Assessing carbon storage and sequestration by Canada’s urban forests using high resolution earth observation data. Urban Green. 2014, 13, 484–494. [Google Scholar] [CrossRef]
- Havu, M.; Kulmala, L.; Kolari, P.; Vesala, T.; Riikonen, A.; Järvi, L. Carbon sequestration potential of street tree plantings in Helsinki. Biogeosciences 2022, 19, 2121–2143. [Google Scholar] [CrossRef]
- Shadman, S. The carbon sequestration potential of urban public parks of densely populated cities to improve environmental sustainability. Sustain. Energy Technol. Assess. 2022, 52, 102064. [Google Scholar] [CrossRef]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2019, 49, 62–73. [Google Scholar] [CrossRef]
- Janowiak, M.K.; Brandt, L.A.; Wolf, K.L.; Brady, M.; Darling, L.; Lewis, A.D.; Fahey, R.T.; Giesting, K.; Hall, E.; Henry, M.; et al. Climate Adaptation Actions for Urban Forests and Human Health; Gen. Tech. Rep. Nrs-203; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2021. [Google Scholar]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosyst. 2019, 22, 683–697. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Akbari, H.; Kurn, D.M.; Bretz, S.E.; Hanford, J.W. Peak power and cooling energy savings of shade trees. Energy Build. 1997, 25, 139–148. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Simpson, J.; McPherson, E.G. Potential of tree shade for reducing residential energy use in California. J. Arboric. 1996, 22, 10–18. [Google Scholar] [CrossRef]
- Akbari, H.; Taha, H. The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities. Energy 1992, 17, 141–149. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R. Potential energy savings in buildings by an urban tree planting program in California. Urban For. Urban Green. 2003, 2, 73–86. [Google Scholar] [CrossRef]
- Donovan, G.H.; Butry, D.T. The value of shade: Estimating the effect of urban trees on summertime electricity use. Energy Build. 2009, 41, 662–668. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Barradas, V.L. Air temperature and humidity and human comfort index of some city parks of Mexico City. Int. J. Biometeorol. 1991, 35, 24–28. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A preliminary study on the local cool-island intensity of Taipei City parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Clim. 2006, 26, 1695–1711. [Google Scholar] [CrossRef]
- Chi, D.; Aerts, R.; Van Nieuwenhuyse, A.; Bauwelinck, M.; Demoury, C.; Plusquin, M.; Nawrot, T.S.; Casas, L.; Somers, B. Residential exposure to urban trees and medication sales for mood disorders and cardiovascular disease in Brussels, Belgium: An ecological study. Environ. Health Perspect. 2022, 130, 57003. [Google Scholar] [CrossRef]
- Townsend, J.B.; Barton, S. The impact of ancient tree form on modern landscape preferences. Urban For. Urban Green. 2018, 34, 205–216. [Google Scholar] [CrossRef]
- Velarde, M.; Fry, G.; Tveit, M. Health effects of viewing landscapes—Landscape types in environmental psychology. Urban For. Urban Green. 2007, 6, 199–212. [Google Scholar] [CrossRef]
- WHO. Urban Green Spaces and Health: A Review of Evidence; World Health Organization—Regional Office for Europe: Bonn, Germany, 2016. [Google Scholar]
- Rugel, E.J. Connecting Natural Space Exposure to Mental Health Outcomes Across Vancouver, Canada. Ph.D. Thesis, The School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada, 2019. [Google Scholar]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighborhoods: Introducing the 3–30–300 rule. J. For. Res. 2023, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
- WHO. Urban Green Spaces: A Brief for Action; World Health Organization, Regional Office for Europe: Bonn, Germany, 2017; Available online: https://www.who.int/europe/publications/i/item/9789289052498 (accessed on 1 October 2021).
- UNECE. Advancing Sustainable Urban and Peri-Urban Forestry—A Green Approach to Resilience, Health, and Green Recovery; Policy Brief; United Nations Economic Commission for Europe: Geneva, Switzerland, 2022; Available online: https://unece.org/forests/policy-briefs-forestry-and-timber-section (accessed on 26 July 2022).
- Dobbs, C.; Martinez-Harms, M.J.; Kendal, D. Ecosystem services. In Routledge Handbook of Urban Forestry; Ferrini, F., Konijnendijk van den Bosch, C., Fini, A., Eds.; Routledge: London, UK, 2017; pp. 51–64. [Google Scholar]
- Jarvis, I.; Sbihi, H.; Davis, Z.; Brauer, M.; Czekajlo, A.; Davies, H.W.; Gergel, S.E.; Guhn, M.; Jerrett, M.; Koehoorn, M.; et al. The influence of early-life residential exposure to different vegetation types and paved surfaces on early childhood development: A population-based birth cohort study. Environ. Int. 2022, 163, 107196. [Google Scholar] [CrossRef]
- Van den Berg, M.; Wendel-Vos, W.; Van Poppel, M.; Kemper, H.; van Mechelen, W.; Maas, J. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X. Does sleep grow on trees? A longitudinal study to investigate the potential prevention of insufficient sleep with different types of urban green space. SSM-Popul. Health 2019, 10, 100497. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X. Urban green space, tree canopy and prevention of cardiometabolic diseases: A multilevel longitudinal study of 46,786 Australians. Int. J. Epidemiol. 2020, 49, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Holtan, M.T.; Dieterlen, S.L.; Sullivan, W.C. Social life under cover: Tree canopy and social capital in Baltimore. Environ. Behav. 2014, 47, 502–525. [Google Scholar] [CrossRef]





| Concept | Mass of Carbon (kg) 2024 | Mass of Carbon (kg) 2025 | Carbon Captured (kg) |
|---|---|---|---|
| Estimated in the measurements | 340,873.1 | 389,488.2 | 48,615.1 |
| Estimated in all urban trees | 5,676,714.1 | 6,486,322.5 | 809,608.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazon, J. Integrating Urban Tree Carbon Sequestration into Metropolitan Ecosystem Services for Climate-Neutral Cities: A Citizen Science-Based Methodology. Urban Sci. 2025, 9, 463. https://doi.org/10.3390/urbansci9110463
Mazon J. Integrating Urban Tree Carbon Sequestration into Metropolitan Ecosystem Services for Climate-Neutral Cities: A Citizen Science-Based Methodology. Urban Science. 2025; 9(11):463. https://doi.org/10.3390/urbansci9110463
Chicago/Turabian StyleMazon, Jordi. 2025. "Integrating Urban Tree Carbon Sequestration into Metropolitan Ecosystem Services for Climate-Neutral Cities: A Citizen Science-Based Methodology" Urban Science 9, no. 11: 463. https://doi.org/10.3390/urbansci9110463
APA StyleMazon, J. (2025). Integrating Urban Tree Carbon Sequestration into Metropolitan Ecosystem Services for Climate-Neutral Cities: A Citizen Science-Based Methodology. Urban Science, 9(11), 463. https://doi.org/10.3390/urbansci9110463

