Air Quality and Environmental Policy in Kazakhstan: Challenges, Innovations, and Pathways to Cleaner Air
Abstract
1. Introduction
2. Methodology
2.1. Official Monitoring
2.2. Portfolio of Air Monitoring Methods Relevant to Kazakhstan
2.3. Supplementary Low-Cost Sensors
2.4. Emissions Monitoring and Inventories
2.5. Modeling Approaches
- Gaussian dispersion (near-field screening)
- 2.
- Eulerian CTMs (city to regional scales)
- 3.
- Data-driven and statistical models (forecasting and inference)
3. Results
3.1. Ambient Air Quality in Kazakhstan Cities
3.2. Key Sources of Urban Air Pollution in Kazakhstan
3.2.1. Coal-Fired Power Plants and Industrial Emissions
3.2.2. Residential Heating with Coal and Biomass
3.2.3. Transportation Emissions
3.2.4. Natural Factors and Transboundary Influences
3.2.5. Seasonal Patterns
3.3. Air Quality Status and Trends in Astana
3.3.1. Observed Concentrations, Exceedances, and Wintertime Intensification
- T: Air temperature (°C) at 2 m above the surface.
- RH: Relative humidity (%) at 2 m.
- WS: Mean wind speed (m/s) at a height of 10–12 m.
- WD: Mean wind direction (compass points) at a height of 10–12 m.
3.3.2. Automated Emissions Monitoring by Industries
3.3.3. Seasonal Variations and Pollution Episodes
3.3.4. Source Contributions to Pollution in Astana
3.3.5. Comparisons and Health Implications
4. Discussions and Analyses
4.1. Policy Responses and Mitigation Measures
4.2. Transportation Emissions Control
4.3. Industrial Emissions and Regulatory Framework
4.4. Public Awareness and Civil Society
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zalakeviciute, R.; Lopez-Villada, J.; Ochoa, A.; Moreno, V.; Byun, A.; Proaño, E.; Mejía, D.; Bonilla-Bedoya, S.; Rybarczyk, Y.; Vallejo, F. Urban air pollution in the Global South: A never-ending crisis? Atmosphere 2025, 16, 487. [Google Scholar] [CrossRef]
- Rosales, C.M.; Bratburd, J.R.; Diez, S.; Duncan, S.; Malings, C.; Pant, P. Open air quality data platforms for environmental health research and action. Curr. Environ. Health Rep. 2025, 12, 27. [Google Scholar] [CrossRef]
- Faridi, S.; Krzyzanowski, M.; Cohen, A.J.; Malkawi, M.; Moh’d Safi, H.A.; Yousefian, F.; Azimi, F.; Naddafi, K.; Momeniha, F.; Niazi, S.; et al. Ambient air quality standards and policies in Eastern Mediterranean countries: A review. Int. J. Public Health 2023, 68, 1605352. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Standards Database. Available online: https://www.who.int/tools/air-quality-standards (accessed on 15 October 2025).
- Hodoli, C.G.; Mead, I.; Coulon, F.; Ivey, C.E.; Tawiah, V.O.; Raheja, G.; Malings, C. Urban air quality management at low cost using micro air sensors: A case study from Accra, Ghana. ACS ES&T Air 2025, 2, 201–214. [Google Scholar] [CrossRef]
- Shabbir, M.; Saeed, T.; Saleem, A.; Bhave, P.; Bergin, M.; Khokhar, M.F. A paradigm shift: Low-cost sensors for effective air quality monitoring and management in developing countries. Environ. Int. 2025, 200, 109521. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.K.; Fournier de Lauriere, C.; Henninger, E. Persistent inequalities in global air quality monitoring should not delay pollution mitigation. Proc. Natl. Acad. Sci. USA 2025, 122, e2423259122. [Google Scholar] [CrossRef] [PubMed]
- Bainomugisha, E.; Warigo, P.A.; Daka, F.B.; Nshimye, A.; Birungi, M.; Okure, D. AI-driven environmental sensor networks and digital platforms for urban air pollution monitoring and modelling. Soc. Impacts 2024, 3, 100044. [Google Scholar] [CrossRef]
- Vallejo, F.; Villacrés, P.; Yánez, D.; Espinoza, L.; Bodero-Poveda, E.; Díaz-Robles, L.A.; Oyaneder, M.; Campos, V.; Palmay, P.; Cordovilla-Pérez, A.; et al. Prolonged power outages and air quality: Insights from Quito’s 2023–2024 energy crisis. Atmosphere 2025, 16, 274. [Google Scholar] [CrossRef]
- Kerimray, A.; Azbanbayev, E.; Kenessov, B.; Plotitsyn, P.; Alimbayeva, D.; Karaca, F. Spatiotemporal variations and contributing factors of air pollutants in Almaty, Kazakhstan. Aerosol Air Qual. Res. 2020, 20, 1340–1352. [Google Scholar] [CrossRef]
- Assanov, D.; Zapasnyi, V.; Kerimray, A. Air quality and industrial emissions in the cities of Kazakhstan. Atmosphere 2021, 12, 314. [Google Scholar] [CrossRef]
- Mukhtarov, R.; Ibragimova, O.P.; Omarova, A.; Tursumbayeva, M.; Tursun, K.; Muratuly, A.; Karaca, F.; Baimatova, N. An episode-based assessment for the adverse effects of air mass trajectories on PM2.5 levels in Astana and Almaty, Kazakhstan. Urban Clim. 2023, 49, 101541. [Google Scholar] [CrossRef]
- Temirbekov, N.; Temirbekova, M.; Tamabay, D.; Kasenov, S.; Askarov, S.; Tukenova, Z. Assessment of the Negative Impact of Urban Air Pollution on Population Health Using Machine Learning Method. Int. J. Environ. Res. Public Health 2023, 20, 6770. [Google Scholar] [CrossRef]
- Tursumbayeva, M.; Kerimray, A.; Karaca, F.; Permadi, D.A. Cities of Central Asia: New hotspots of air pollution in the world. Atmos. Environ. 2023, 309, 119901. [Google Scholar] [CrossRef]
- Tursumbayeva, M.; Kerimray, A.; Karaca, F.; Permadi, D.A. Planetary boundary layer and its relationship with PM2.5 concentrations in Almaty, Kazakhstan. Aerosol Air Qual. Res. 2022, 22, 210294. [Google Scholar] [CrossRef]
- Baimatova, N.; Omarova, A.; Muratuly, A.; Tursumbayeva, M.; Ibragimova, O.P.; Bukenov, B.; Kerimray, A. Seasonal variations and effect of COVID-19 lockdown restrictions on the air quality in the cities of Kazakhstan. Environ. Process. 2022, 9, 48. [Google Scholar] [CrossRef]
- Biloshchytskyi, A.; Neftissov, A.; Kuchanskyi, O.; Andrashko, Y.; Biloshchytska, S.; Mukhatayev, A.; Kazambayev, I. Fractal analysis of air pollution time series in urban areas in Astana, Republic of Kazakhstan. Urban Sci. 2024, 8, 131. [Google Scholar] [CrossRef]
- Ibragimova, O.P.; Omarova, A.; Bukenov, B.; Zhakupbekova, A.; Baimatova, N. Seasonal and spatial variation of volatile organic compounds in ambient air of Almaty City, Kazakhstan. Atmosphere 2021, 12, 1592. [Google Scholar] [CrossRef]
- Beisenova, R.; Kuanyshevich, B.Z.; Turlybekova, G.; Yelikbayev, B.; Kakabayev, A.A.; Shamshedenova, S.; Nugmanov, A. Assessment of atmospheric air quality in the region of Central Kazakhstan and Astana. Atmosphere 2023, 14, 1601. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8/978-92-4-003421-1. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 15 October 2025).
- Hoffmann, B.; Boogaard, H.; de Nazelle, A.; Andersen, Z.J.; Abramson, M.; Brauer, M.; Brunekreef, B.; Forastiere, F.; Huang, W.; Kan, H.; et al. WHO Air Quality Guidelines 2021—Aiming for healthier air for all: A joint statement by medical, public health, scientific societies and patient organisations. Int. J. Public Health 2021, 66, 1604465. [Google Scholar] [CrossRef]
- Pai, S.J.; Carter, T.S.; Heald, C.L.; Kroll, J.H. Updated World Health Organization air quality guidelines highlight the importance of non anthropogenic PM2.5. Environ. Sci. Technol. Lett. 2022, 9, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25 year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Burnett, R.T.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., III; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Braun, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, J.; Zhu, X.; Song, T.; Münkel, C.; Hu, B.; Schäfer, K.; Liu, Z.; Zhang, J.; Wang, L.; et al. Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys. 2016, 16, 2459–2475. [Google Scholar] [CrossRef]
- Clancy, L.; Goodman, P.; Sinclair, H.; Dockery, D.W. Effect of air pollution control (coal ban) on death rates in Dublin, Ireland: An intervention study. Lancet 2002, 360, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Mudway, I.S.; Dundas, I.; Wood, H.E.; Marlin, N.; Jamaludin, J.B.; Bremner, S.A.; Cross, L.; Grieve, A.; Nanzer, A.; Barratt, B.M.; et al. Impact of London’s low emission zone on air quality and children’s respiratory health: A sequential annual cross sectional study. Lancet Public Health 2019, 4, e15–e26. [Google Scholar] [CrossRef]
- Prieto-Rodríguez, J.; Pérez-Villadóniga, M.J.; Salas, R.; Russo, A. Impact of London Toxicity Charge and Ultra Low Emission Zone on NO2. Transp. Policy 2022, 129, 237–247. [Google Scholar] [CrossRef]
- Tsocheva, I.; Scales, J.; Dove, R.; Chavda, J.; Kalsi, H.; Wood, H.E.; Colligan, G.; Cross, L.; Newby, C.; Hall, A.; et al. Investigating the impact of London’s Ultra Low Emission Zone on children’s health: Children’s Health in London and Luton (CHILL) protocol for a prospective parallel cohort study. BMC Pediatr. 2023, 23, 556. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
- Song, C.; Liu, B.; Cheng, K.; Cole, M.A.; Dai, Q.; Elliott, R.J.R.; Shi, Z. Attribution of air quality benefits to clean winter heating policies in China: Combining machine learning with causal inference. Environ. Sci. Technol. 2023, 57, 17707–17717. [Google Scholar] [CrossRef]
- Zhakiyev, N.; Kalenova, A.; Khamzina, A. The energy sector of the capital of Kazakhstan: Status quo and policy towards smart city. Int. J. Energy Econ. Policy 2022, 12, 414–423. [Google Scholar] [CrossRef]
- Ormanova, G.; Hopke, P.K.; Omrani, A.D.; Zhakiyev, N.; Shah, D.; Torkmahalleh, M.A. Particulate black carbon mass concentrations and the episodic source identification driven by atmospheric blocking effects in Astana, Kazakhstan. Sci. Total Environ. 2024, 939, 173581. [Google Scholar] [CrossRef] [PubMed]
- Republic of Kazakhstan. Ecological (Environmental) Code of the Republic of Kazakhstan; Law No. 400-VI of 2 January 2021 (Unofficial English Translation); Information and Legal System “Adilet”: Astana, Kazakhstan, 2021; Available online: https://adilet.zan.kz/eng/docs/K2100000400 (accessed on 6 September 2025).
- Ismailov, V. Kazakhstan’s Air Quality Stagnates Despite Emission Reforms. The Times of Central Asia, 28 May 2025. Available online: https://timesca.com/kazakhstans-air-quality-stagnates-despite-emission-reforms (accessed on 15 October 2025).
- IQAir. 2024 World Air Quality Report; IQAir: Steinach, Switzerland, 2025; Available online: https://www.iqair.com/world-air-quality-report (accessed on 6 September 2025).
- Kazhydromet. Information Bulletin on the State of the Environment of the Republic of Kazakhstan-2023; RSE “Kazhydromet”: Astana, Kazakhstan, 2023; Available online: https://www.kazhydromet.kz/uploads/calendar/149/year_file/6647340abf963informacionnyy-byulleten-po-rk-za-2023-god-1.pdf (accessed on 6 September 2025). (In Russian)
- Bureau of National Statistics. On the State of Protection of Atmospheric Air in the Republic of Kazakhstan (2024); Bureau of National Statistics: Astana, Kazakhstan, 2025. Available online: https://stat.gov.kz/en/industries/environment/stat-eco/publications/412258/ (accessed on 6 September 2025).
- Bureau of National Statistics. On the State of Protection of Atmospheric Air in the Republic of Kazakhstan (2023); Bureau of National Statistics: Astana, Kazakhstan, 2024. Available online: https://stat.gov.kz/en/industries/environment/stat-eco/publications/183070/ (accessed on 6 September 2025).
- Bureau of National Statistics. On the State of Protection of Atmospheric Air in the Republic of Kazakhstan in 2022; Bureau of National Statistics: Astana, Kazakhstan, 2023. Available online: https://stat.gov.kz/api/iblock/element/68164/file/en/ (accessed on 6 September 2025).
- World Bank. More Efficient Residential Heating in Kazakhstan Can Help with Cleaner Air and Improved Health. Available online: https://www.worldbank.org/en/news/press-release/2022/09/07/more-efficient-residential-heating-in-kazakhstan-can-help-with-cleaner-air-and-improved-health (accessed on 4 September 2025).
- World Bank. Kazakhstan Discusses Actions to Reduce Air Pollution with Partners. Available online: https://www.worldbank.org/en/news/press-release/2023/04/25/kazakhstan-discusses-actions-to-reduce-air-pollution-with-partners (accessed on 4 September 2025).
- OECD. Clean Household Energy Consumption in Kazakhstan: A Roadmap; OECD Publishing: Paris, France, 2020; Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2020/12/clean-household-energy-consumption-in-kazakhstan_c6a5e097/551f0613-en.pdf (accessed on 6 September 2025).
- EBRD (European Bank for Reconstruction and Development). GrCF2 W2 Almaty CHP 2 Modernisation (PSD). Available online: https://www.ebrd.com/home/work-with-us/projects/psd/52821.html (accessed on 6 September 2025).
- Song, J.; Wang, Y.; Zhang, Q.; Qin, W.; Pan, R.; Yi, W.; Xu, Z.; Cheng, J.; Su, H. Premature mortality attributable to NO2 exposure in cities and the role of built environment: A global analysis. Sci. Total Environ. 2023, 866, 161395. [Google Scholar] [CrossRef] [PubMed]
- Azibek, B.; Biloshchytskyi, A.; Nazari, M.A.; Zhakiyev, N. CO2 emission estimation in Central Asian countries by use of artificial intelligent methods. Cent. Asian J. Sustain. Clim. Res. 2024, 3, 1–23. [Google Scholar] [CrossRef]
- Zhakiyev, N.; Khamzina, A.; Zhakiyeva, S.; De Miglio, R.; Bakdolotov, A.; Cosmi, C. Optimization modelling of the decarbonization scenario of the total energy system of Kazakhstan until 2060. Energies 2023, 16, 5142. [Google Scholar] [CrossRef]
- Zhakiyev, N.; Burkhanova, D.; Nurkanat, A.; Zhussipkaliyeva, S.; Sospanova, A.; Khamzina, A. Green energy in grey areas: The financial and policy challenges of Kazakhstan’s energy transition. Energy Res. Soc. Sci. 2025, 124, 104046. [Google Scholar] [CrossRef]
- Zhakiyev, N.K.; Kayisli, K.; Kushekkaliyev, A.; Sagadatova, N.; Biloshchytskyi, A. Forecasting of GHG emissions from energy and industrial sectors of Kazakhstan and assessment of mitigation scenarios with high share of renewables. Int. J. Renew. Energy Res. 2025, 15, 300–309. [Google Scholar] [CrossRef]
- Bureau of National Statistics. 169.4 Thousand Units of Motor Vehicles Were Registered in September. News Release. 2023. Available online: https://stat.gov.kz/en/news/169-4-thousand-units-of-motor-vehicles-were-registered-in-september/ (accessed on 6 September 2025).
- Eurasian Economic Commission. TR CU 013/2011 “On Requirements to Motor and Aviation Gasoline, Diesel and Marine Fuel, Jet Fuel and Fuel Oil”; 2011 (as Amended). Available online: https://globexpert.ru/upload/tcu/trcu_013.pdf (accessed on 6 September 2025).
- European Bank for Reconstruction and Development. Astana E-Mobility Project (Procurement of Up to 100 Electric Buses); EBRD: London, UK, 2024; Available online: https://www.ebrd.com/home/work-with-us/projects/psd/55484.html (accessed on 6 September 2025).
- Prati, M.V.; Costagliola, M.A.; Unich, A.; Mariani, A. Emission Factors and Fuel Consumption of CNG Buses in Real Driving Conditions. Transp. Res. Part D Transp. Environ. 2022, 113, 103534. [Google Scholar] [CrossRef]
- Gioria, R.; Selleri, T.; Giechaskiel, B.; Franzetti, J.; Ferrarese, C.; Melas, A.; Forloni, F.; Suarez-Bertoa, R.; Perujo, A. Regulated and Unregulated Emissions from Euro VI Diesel and CNG Heavy-Duty Vehicles. Transp. Res. Part D Transp. Environ. 2024, 134, 104349. [Google Scholar] [CrossRef]
- Salimbene, O.; Baeza Romero, M.T.; Pilla, F.; Čok, G. Air quality awareness—Empirical evidence from a comparative perspective between two European cities. Urban Sci. 2024, 8, 133. [Google Scholar] [CrossRef]
- Calvo, V.L.V.; Giner-Santonja, G.; Alonso-Fariñas, B.; Aguado, J.M. The effect of the European Industrial Emissions Directive on the air emission limit values set by competent authorities in the permitting procedure: The case of the Spanish cement industry. Sci. Total Environ. 2021, 773, 145491. [Google Scholar] [CrossRef] [PubMed]
- Zaino, R.; Ahmed, V.; Alhammadi, A.M.; Alghoush, M. Electric Vehicle Adoption: A Comprehensive Systematic Review of Technological, Environmental, Organizational and Policy Impacts. World Electr. Veh. J. 2024, 15, 375. [Google Scholar] [CrossRef]
- Bazarbekova, G.; Inkarbekov, M.; Qumar, A.B.; Kosherbayeva, L.; Akhmetzhan, A.; Suieubekov, B. Mortality trends from respiratory disease in Kazakhstan: A 2011–2021 analysis. J. Public Health Res. 2025, 14. [Google Scholar] [CrossRef]
- Kanat, O.; Yan, Z.; Erum, N.; Asghar, M.M.; Zaidi, S.A.H.; Said, J. How do air quality, economic growth and energy use affect life expectancy in the Republic of Kazakhstan? Air Qual. Atmos. Health 2024, 17, 513–523. [Google Scholar] [CrossRef]
- Zhakiyev, N.; Sagadatova, N.; Ismagulova, G.; Bakdolotov, A.; Biloshchytskyi, A. Hybrid technico economical modeling of the mid term green economy and low carbon development strategy of Kazakhstan. ES Energy Environ. 2024, 25, 1235. [Google Scholar] [CrossRef]

| Pollutant | Predominant Urban Sources | Guideline Value * | Main Health/Environmental Impacts |
|---|---|---|---|
| PM2.5 | Coal/power and residential heating; vehicle exhaust; secondary aerosol; dust resuspension | 5 μg m−3 (annual); 15 μg m−3 (24 h) | Cardiovascular and respiratory disease; premature mortality; visibility/haze |
| PM10 | Construction and road dust; combustion; resuspension | 15 μg m−3 (annual); 45 μg m−3 (24 h) | Respiratory irritation; reduced visibility/soiling |
| NO2 | Traffic, boilers, power plants (fuel; NOx) | 10 μg m−3 (annual); 25 μg m−3 (24 h) | Airway inflammation; asthma; ozone/nitrate PM precursor |
| SO2 | Coal/oil combustion in power and heat; industry | 40 μg m−3 (24 h) | Respiratory effects; sulfate PM and acid deposition |
| CO | Incomplete combustion (vehicles, stoves, and open burning) | 4 mg m−3 (24 h) | Reduced O2 delivery; cardiovascular stress; acute toxicity |
| O3 | Secondary (NOx + VOCs under sunlight) | 100 μg m−3 (8 h) | Respiratory symptoms; lung function decrements |
| City | PM2.5 2024 (µg/m3) | ×WHO | WHO Annual Category |
|---|---|---|---|
| Karaganda | 104.8 | 21.0× | >50 (well above interim targets) |
| Temirtau | 43.5 | 8.7× | 35.1–50 |
| Atyrau (Balykshi station) | 32.1 | 6.4× | IT-1 (25.1–35) |
| Almaty | 20.3 | 4.1× | IT-2 (15.1–25) |
| Oskemen (Ust-Kamenogorsk) | 20.9 | 4.2× | IT-2 (15.1–25) |
| Shymkent | 19.9 | 4.0× | IT-2 (15.1–25) |
| Aktau | 18.0 | 3.6× | IT-2 (15.1–25) |
| Astana | 15.4 | 3.1× | IT-2 (15.1–25) |
| Pavlodar | 15.4 | 3.1× | IT-2 (15.1–25) |
| Kostanay | 15.0 | 3.0× | IT-3 (10.1–15) |
| Aktobe | 14.4 | 2.9× | IT-3 (10.1–15) |
| Kokshetau | 11.6 | 2.3× | IT-3 (10.1–15) |
| Sector (Source Type) | What Predominates (Pollutants) | Absolute Indicators | Contribution to Population PM2.5 Exposure |
|---|---|---|---|
| Industry and power (stationary sources: CHP, metallurgy, and large coal boilers) | SO2, primary PM (ash/dust), NOx, CO, and NMVOC | 2271.4 kt emitted from stationary sources in 2024, +0.6% vs. 2023; 2023: 2257.5 kt; and 2022: 2314.7 kt (BNS, 2022–2024 time series). Longer horizon shows values > 2.2–2.4 Mt (e.g., 2018 = 2446.7 kt). | Coal-fired CHPs significantly contribute to annual PM2.5 exposure; in Astana 7 μg/m3 (22%) from CHPs (World Bank modeling). |
| Residential heating (household stoves and small coal boilers) | Primary PM2.5, black carbon, SO2, CO | Absolute emissions are under-inventoried (many small, unpermitted sources). Household coal use remains widespread in peri-urban areas. | Largest single source of annual PM2.5 exposure in both capitals: Astana 10 μg/m3 (30%); Almaty 15 μg/m3 (25%) from household solid-fuel heating. |
| On-road transport (diesel and spark-ignition vehicles) | NO2/NOx, CO, primary PM, and VOCs → secondary nitrate PM2.5 | Vehicle stock 5.16 million (October 2023) → 5.33 million (January 2024). Aging fleet; majority > 10 years. (BNS, 2023–2024). | Astana PM2.5 source apportionment: spark-ignition 30%, diesel 7%, and secondary nitrate 15% of PM2.5 (receptor PMF), confirming large traffic contribution to annual fine PM. |
| Season | Statistics | CO | NO | PM10 | PM2.5 | SO2 |
|---|---|---|---|---|---|---|
| Annual | Mean | 543.56 | 8.21 | 21.99 | 11.54 | 18.66 |
| Std | 556.41 | 27.90 | 33.30 | 18.43 | 16.88 | |
| 75th percentile | 578.82 | 4.72 | 24.88 | 13.14 | 24.06 | |
| 25th percentile | 291.17 | 0.00 | 5.54 | 1.64 | 8.51 | |
| Non-Heating | Mean | 481.43 | 7.48 | 20.67 | 10.59 | 14.85 |
| Std | 471.00 | 29.74 | 24.21 | 15.18 | 11.43 | |
| 75th percentile | 513.51 | 4.83 | 24.53 | 11.44 | 18.69 | |
| 25th percentile | 260.02 | 0.00 | 7.45 | 2.07 | 7.12 | |
| Heating | Mean | 590.75 | 8.77 | 22.99 | 12.28 | 21.91 |
| Std | 609.21 | 26.40 | 38.76 | 20.57 | 19.84 | |
| 75th percentile | 624.91 | 4.58 | 25.11 | 14.78 | 28.61 | |
| 25th percentile | 315.35 | 0.00 | 3.22 | 1.38 | 8.94 |
| Pollutant | Heating Season Mean ± SD (µg m−3) | Non-Heating Season Mean ± SD (µg m−3) | Heating Season Median [IQR] (µg m−3) | Non-Heating Season Median [IQR] (µg m−3) |
|---|---|---|---|---|
| PM2.5 | 12.3 ± 20.6 | 10.6 ± 15.2 | 4.4 [1.4–14.8] | 5.1 [2.1–11.4] |
| PM10 | 23.0 ± 38.8 | 20.7 ± 24.2 | 9.6 [3.2–25.1] | 12.0 [7.4–24.5] |
| SO2 | 21.9 ± 19.8 | 14.8 ± 11.4 | 21.1 [8.9–28.6] | 15.8 [7.1–18.7] |
| CO | 590.7 ± 609.2 | 481.4 ± 471.0 | 433 [315–625] | 363 [260–514] |
| NO | 8.8 ± 26.4 | 7.5 ± 29.7 | 1.3 [0.0–4.6] | 1.5 [0.0–4.8] |
| Pollutant | Test for Medians (Mann–Whitney U) | p-Value | Interpretation |
|---|---|---|---|
| PM2.5 | U-test | <0.001 | Winter intensification with episodic peaks (mean goes up, median goes down). |
| PM10 | U-test | <0.001 | Winter intensification; coarse dust modulates summer medians. |
| SO2 | U-test | <0.001 | Winter elevation consistent with coal combustion. |
| CO | U-test | <0.001 | Winter elevation consistent with incomplete combustion. |
| NO | U-test | 0.29 | No significant seasonal change in NO alone. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhakiyev, N.; Khamzina, A.; Sarkulova, Z.; Biloshchytskyi, A. Air Quality and Environmental Policy in Kazakhstan: Challenges, Innovations, and Pathways to Cleaner Air. Urban Sci. 2025, 9, 464. https://doi.org/10.3390/urbansci9110464
Zhakiyev N, Khamzina A, Sarkulova Z, Biloshchytskyi A. Air Quality and Environmental Policy in Kazakhstan: Challenges, Innovations, and Pathways to Cleaner Air. Urban Science. 2025; 9(11):464. https://doi.org/10.3390/urbansci9110464
Chicago/Turabian StyleZhakiyev, Nurkhat, Ayagoz Khamzina, Zhadyrassyn Sarkulova, and Andrii Biloshchytskyi. 2025. "Air Quality and Environmental Policy in Kazakhstan: Challenges, Innovations, and Pathways to Cleaner Air" Urban Science 9, no. 11: 464. https://doi.org/10.3390/urbansci9110464
APA StyleZhakiyev, N., Khamzina, A., Sarkulova, Z., & Biloshchytskyi, A. (2025). Air Quality and Environmental Policy in Kazakhstan: Challenges, Innovations, and Pathways to Cleaner Air. Urban Science, 9(11), 464. https://doi.org/10.3390/urbansci9110464

