Faeces of Capybara (Hydrochoerus hydrochaeris) as a Bioindicator of Contamination in Urban Environments in Central-West Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
- (i)
- Anhanduí Ecological Park: located at the confluence of the Bandeira Stream with the Anhanduí River, the southern region of the city of Campo Grande (coordinates −20.50653, −54.64299).
- (ii)
- Sóter Ecological Park: this park is watered by the Sóter Stream, in the northeast region of the city of Campo Grande (coordinates −20.42934, −54.57655).
- (iii)
- Prosa State Park: this park is watered by the Desbarrancado and Joaquim Português streams. It is located on the Serra de Maracaju Plateau, in the eastern region of the city of Campo Grande (coordinates −20.45021, −54.56084).
- (iv)
- Lago do Amor: this is an artificial lagoon, supplied by the Cabaça and Bandeira streams, which form the Bandeira basin. It is located within the area of the Federal University of Mato Grosso do Sul (UFMS), southern region of the city of Campo Grande (coordinates −20.503133, −54.618797). This lagoon is influenced by human activity and receives waste/chemical products brought by streams that cross the city, and the faeces samples were collected on its margins.
2.2. Faeces Collection
2.3. Microwave-Assisted Digestion Procedure, Inductively Coupled Plasma—Optical Emission Spectrometry (ICP-OES), Elemental Analysis, and Calibration Curves
2.4. Calculation of Human Health Risk Assessment
2.5. Calculation of Accidental Ingestion Dose of Soil/Faeces
2.6. Calculation of Inhalation Dose of Soil/Faeces Particles
2.7. Calculation of Dermal Contact Dose with Soil/Faeces
2.8. Target Hazard Quotient
2.9. Statistical Analysis
3. Results
3.1. Quantification of Metal(loid)s in Faeces
3.2. Human Health Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; de Araujo, A.S.F.; Singh, R.P. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front. Environ. Sci. 2017, 5, 64. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Ghambashidze, G.; Kunchulia, I.; Urushadze, T.; Ploeger, A. Water quality in surface water: A preliminary assessment of heavy metal contamination of the Mashavera River, Georgia. Int. J. Environ. Res. Public Health 2018, 15, 621. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Guan, T.X.; He, H.B.; Zhang, X.D.; Bai, Z. Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere 2011, 82, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Azeez, J.O.; Adekunle, I.O.; Atiku, O.O.; Akande, K.B.; Jamiu-Azeez, S.O. Effect of nine years of animal waste deposition on profile distribution of heavy metals in Abeokuta, South-western Nigeria and its implication for environmental quality. Waste Manag. 2009, 29, 2582–2586. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, H.L.; Schroder, J.L.; Udeigwe, T.K.; Zhang, Z.Q.; Dodla, S.K.; Stietiya, M.H. Reducing potential leaching of phosphorus, heavy metals, and fecal coliform from animal wastes using bauxite residues. Water Air Soil Pollut. 2011, 214, 241–252. [Google Scholar] [CrossRef]
- Bianco, K.; Albano, R.M.; Oliveira, S.S.A.; Nascimento, A.P.A.; Dos Santos, T.; Clementino, M.M. Possible health impacts due to animal and human fecal pollution in water intended for drinking water supply of Rio de Janeiro, Brazil. J. Water Supply Res. Technol.–AQUA 2020, 69, 70–84. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of heavy metals in animal feeds and manures from farms of different scales in northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef]
- Hejna, M.; Moscatelli, A.; Onelli, E.; Baldi, A.; Pilu, S.; Rossi, L. Evaluation of concentration of heavy metals in animal rearing system. Ital. J. Anim. Sci. 2019, 18, 1372–1384. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Amadi, C.N.; Frazzoli, C.; Orisakwe, O.E. Sentinel species for biomonitoring and biosurveillance of environmental heavy metals in Nigeria. J. Environ. Sci. Health C 2022, 38, 21–60. [Google Scholar] [CrossRef] [PubMed]
- Pokorny, B.; Ribaric, L.C. Lead, cadmium and zinc in tissue of roe deer (Capreolus capreolus) near the lead smelter in the Koroska region (northern Slovenia). Bull. Environ. Contam. Toxicol. 2000, 64, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Beyer, W.N.; Gaston, G.; Brazzle, R.; Connell, A.F.; Audet, D.J. Deer exposed to exceptionally high concentrations of lead near the Continental Mine in Idaho, USA. Environ. Toxicol. Chem. 2007, 26, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Roux, K.E.; Marra, P.P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 2007, 53, 261–268. [Google Scholar] [CrossRef]
- Dzugan, M.; Zielinska, S.; Heclik, J.; Pieniazek, M.; Szostek, M. Evaluation of heavy metals environmental contamination based on their concentrations in tissues of wild pheasant (Phasianus colchicums L). J. Microbiol. Biotechnol. Food Sci. 2012, 2, 238–245. [Google Scholar]
- Rosas, I.; Amabile-Cuevas, C.F.; Calva, E.; Osornio-Vargas, A.R. Animal and human waste as components of urban dust pollution: Health implications, encyclopedia of environmental health. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2011; pp. 75–82. [Google Scholar]
- Penakalapati, G.; Swarthout, J.; Delahoy, M.J.; Mcaliley, L.; Wodnik, B.; Levy, K.; Freeman, M.C. Exposure to animal feces and human health: A systematic review and proposed research priorities. Environ. Sci. Technol. 2017, 51, 11537–11552. [Google Scholar] [CrossRef]
- Jota Baptista, C.; Seixas, F.; Gonzalo-Orden, J.M.; Oliveira, P.A. Biomonitoring metals and metalloids in wild mammals: Invasive versus non-invasive sampling. Environ. Sci. Pollut. Res. Int. 2022, 29, 18398–18407. [Google Scholar] [CrossRef]
- García-Muñoz, J.; Pérez-López, M.; Soler, F.; Míguez-Santiyán, M.P.; Martínez-Morcillo, S. Non-Invasive Samples for Biomonitoring Heavy Metals in Terrestrial Ecosystems. In Trace Metals in the Environment; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Reidinger, R.F., Jr. Factors Influencing Arizona Bat Population Levels. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1972. [Google Scholar]
- Way, C.A.; Schroder, R. Accumulation of lead and cadmium in wild population of the commensal rat, Rattus norvegicus. Arch. Environ. Contam. Toxicol. 1982, 11, 407–417. [Google Scholar] [CrossRef]
- Sileo, L.; Beyer, W.N. Heavy metals in white-tailed deer living near a zinc smelter in Pennsylvania. J. Wildl. Dis. 1985, 21, 289–296. [Google Scholar] [CrossRef]
- Gupta, V. Feces of captive wild mammal use as bio-indicator of heavy metal pollution in urban air. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 2404–2411. [Google Scholar]
- Frossard, A.; Leite, F.L.G.; Silva, E.L.F.; Carneiro, M.T.W.D.; Júnior, J.L.R.; Gomes, L.C.; Endringer, D.C. The snake Bothrops jararaca (Squamata: Viperidae) is a suitable bioindicator of environmental exposure to cadmium: An experimental study. Ecol. Indic. 2019, 104, 166–171. [Google Scholar] [CrossRef]
- Cang, L.; Wang, Y.J.; Zhou, D.M.; Dong, Y.H. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. J. Environ. Sci. 2004, 16, 371–374. [Google Scholar]
- Li, Y.X.; Li, W.; Wu, J.; Xu, L.C.; Su, Q.H.; Xiong, X. Contribution of additive Cu to its accummlation in pig feces: Study in Beijing and Fuxin of China. J. Environ. Sci. 2007, 5, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Li, Y.X.; Li, W.; Lin, C.Y.; Han, W. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Res. Conserv. Recycl. 2010, 54, 985–990. [Google Scholar] [CrossRef]
- EPA/630/R-00/002; USEPA, 2000 Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. Risk Assessment Forum Technical Panel: Washington, DC, USA, 2000.
- Liu, Q.; Song, Y.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Cao, Y.; Chen, A.; Ren, M.; Ge, Y.; Yu, Z.; Wan, S.; Hu, A.; Bo, Q.; et al. Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, eastern China. Sci. Total Environ. 2014, 470–471, 340–347. [Google Scholar] [CrossRef]
- Obiora, S.C.; Chukwu, A.; Daveis, T.C. Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. J. Afr. Earth Sci. 2016, 116, 182–189. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, Y.G.; Zhai, R.; Huang, Y.; Qiu, Y.; Liang, J. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environ. Int. 2005, 31, 784–790. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of detection: A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712a–724a. [Google Scholar]
- Kwong, L.H.; Ercumen, A.; Pickering, A.J.; Arsenault, J.E.; Islam, M.; Parvez, S.M.; Unicomb, L.; Rahman, M.; Davis, J.; Luby, S.P. Ingestion of fecal bacteria along multiple pathways by young children in rural Bangladesh participating in a cluster-randomized trial of water, sanitation, and hygiene interventions (WASH Benefits). Environ. Sci. Technol. 2020, 54, 13828–13838. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, L.; Wang, H.; Martín, J.D. Bioavailability and health risk of toxic heavy metals (As, Hg, Pb and Cd) in urban soils: A Monte Carlo simulation approach. Environ. Res. 2022, 214, 113772. [Google Scholar] [CrossRef]
- Health Canada 2004. Federal Contaminated Site Risk Assessment in Canada: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA), Version 3.0. 2021. Available online: http://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/contaminated-sites/federal-contaminated-site-risk-assessment-canada-part-guidance-human-health-preliminary-quantitative-risk-assessment-pqra-version-2-0.html (accessed on 2 July 2023).
- USEPA (United States Environmental Protection Agency). Guidelines for Exposure Assessment U.S.; Environmental Protection Agency, Risk Assessment Forum: Washington, DC, USA, 1992.
- Van Den Berg, R. Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis towards Proposals for Human Toxicological Intervention Values; National Institute of Public Health and Environmental Protection (RIVM): Bilthoven, The Netherlands, 1995. [Google Scholar]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final, Office of Superfund Remediation and Technology Innovation U.S.; Environmental Protection Agency: Washington, DC, USA, 2004.
- USEPA (United States Environmental Protection Agency). Guidance Manual for Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish; PTI Environmental Services: Bellevue, WA, USA, 1989. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Basic Information about Lead Air Pollution; Environmental Protection Agency: Washington, DC, USA, 2022.
- ATSDR (Agency for Toxic Substances and Disease Registry). Minimal Risk Levels in Draft Toxicological Profiles Are Provisional. 2023. Available online: http://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx (accessed on 2 July 2023).
- Rocha, V.J.; Sekiama, M.L.; Gonçalves, D.D.; Sampieri, R.; Barbosa, G.P.; Dias, T.C.; Rossi, H.R.; Souza, P.F.P. Capivaras (Hydrochoerus hydrochaeris) e a presença do carrapato Amblyomma sculptum no campus da UFSCAR-Araras São Paulo. Cienc. Anim. Bras. 2017, 18, 1–15. [Google Scholar] [CrossRef]
- Ferraz, K.P.M.B.; Verdade, L.M. Ecologia comportamental da capivara: Bases biológicas para o manejo da espécie. In A Produção Animal na Visão dos Brasileiros; Sociedade Brasileira de Zootecnia: Piracicaba, Brazil, 2001; Volume 1, pp. 589–595. [Google Scholar]
- Borges, L.V.; Colares, I.G. Feeding habits of capybaras (Hydrochoerus hydrochaeris, Linnaeus 1766), in the ecological reserve of Taim (ESEC-Taim)—South of Brazil. Braz. Arch. Biol. Technol. 2007, 50, 409–416. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Horta, M.A.P.; Cunha, C.L.N. Avaliação das concentrações de metais pesados no sedimento, na água e nos órgãos de Nycticorax nycticorax (Garça-da-noite) na Baia de Sepetiba, RJ, Brasil. Rev. Gestão Costeira Integr. 2010, 10, 229–241. [Google Scholar] [CrossRef]
- Ramm, C.B. Contaminação por Metais nas Capivaras Hydrochaeris hydrochaeris no Sul do Brasil. Master’s Thesis, Federal University of Rio Grande, Porto Alegre, Brazil, 2015. [Google Scholar]
- Hort, J.; Mikolás, P.; Janiga, M. Heavy metals and other elements in faeces of wild ruminants in the area of paper mill industry. Oecologia Mont. 2017, 26, 56–62. [Google Scholar]
- Przybyla, J.; Buser, M.C.; Abadin, H.G.; Pohl, H.R. Evaluation of ATSDR’s MRL and EPA’s RfCs/RfDs: Similarities, Differences, and Rationales. J. Toxicol. Pharmacol. 2020, 4, 1–13. [Google Scholar]
- Hejna, M.; Onelli, E.; Moscatelli, A.; Bellotto, M.; Cristiani, C.; Stroppa, N.; Rossi, L. Heavy-metal phytoremediation from livestock wastewater and exploitation of exhausted biomass. Int. J. Environ. Res. Public Health 2021, 18, 2239. [Google Scholar] [CrossRef]
- Banerjee, A.D.K. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ. Pollut. 2003, 123, 95–105. [Google Scholar] [CrossRef]
- Ahmed, F.; Ishiga, H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos. Environ. 2006, 40, 3835–3844. [Google Scholar] [CrossRef]
- Han, X.; Lu, X.; Qinggeletu; Wu, Y. Health risks and contamination levels of heavy metals in dusts from parks and squares of an industrial city in semi-arid area of China. Int. J. Environ. Res. Public Health 2017, 14, 886. [Google Scholar] [CrossRef]
- Mutlu, E.A.; Comba, I.Y.; Cho, T.; Eengen, P.A.; Yazici, C.; Soberanes, S.; Hamanaka, R.B.; Nigdelioglu, R.; Meliton, A.Y.; Ghio, A.J.; et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ. Pollut. 2018, 240, 817–830. [Google Scholar] [CrossRef]
- de Almeida, C.C.; Baião, D.S.; Rodrigues, P.A.; Saint’Pierre, T.D.; Hauser-Davis, R.A.; Leandro, K.C.; Paschoalin, V.M.F.; da Costa, M.P.; Conte-Junior, C.A. Toxic Metals and Metalloids in Infant Formulas Marketed in Brazil, and Child Health Risks According to the Target Hazard Quotients and Target Cancer Risk. Int. J. Environ. Res. Public Health 2022, 19, 11178. [Google Scholar] [CrossRef]
- Souza, D.S.; Yang, S.G.N.S.; Alves, A.C.A.; Pontes, R.M.P.; Carvalho, C.C.D.; Soares, P.C.; Oliveira, J.B.O. Parasites and health status of free-ranging capybaras (Hydrochoerus hydrochaeris) in the Atlantic Forest and Caatinga biomes of Brazil. Vet. Parasitol. Reg. Stud. Rep. 2021, 21, 100503. [Google Scholar] [CrossRef]
- Souza, S.L.P.; Benatti, H.R.; Luz, H.R.; Costa, F.B.; Pacheco, R.C.; Labruna, M.B. Endoparasites of capybaras (Hydrochoerus hydrochaeris) from anthropized and natural areas of Brazil. Braz. J. Vet. Parasitol. 2021, 30, e027420. [Google Scholar] [CrossRef]
- Uribe, M.; Hermosilla, C.; Rodríguez-Durán, A.; Vélez, J.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Cortés-Vecino, J.A. Parasites Circulating in Wild Synanthropic Capybaras (Hydrochoerus hydrochaeris): A One Health Approach. Pathogens 2021, 7, 1152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Step | Temperature (°C) | Pressure (bar) | Time/ Ramp (min) | Time/ Permanence (min) | Power (W) |
---|---|---|---|---|---|
1 | 160 | 30 | 1 | 5 | 1120 |
2 | 160 | 30 | 1 | 5 | 1120 |
3 | 20 | 0 | 1 | 10 | 0 |
Metalloid | Anhanduí Ecological Park | Prosa State Park | Sóter Ecological Park | Lago do Amor | p-Value |
---|---|---|---|---|---|
Sample | n = 3 | n = 3 | n = 3 | n = 3 | |
Al | 124.488 a ±0.763 | 130.443 b ± 2.179 | 139.564 c ± 0.669 | 140.322 c ±1.222 | <0.0001 |
As | 0.003 b ± 0.00015 | 0.004 c ± 0.0003 | 0.004 c ± 0.0002 | 0.001 a ± 0.0002 | <0.0001 |
Cd | 0.4193 a ± 0.008 | 0.940 b ± 0.0407 | 0.568 a,b ± 0.053 | 1.042 c ± 0.302 | 0.0033 |
Co | 1.467 b ± 0.130 | 1.019 a ± 0.0399 | 1.776 c ± 0.069 | 1.925 c ± 0.066 | <0.0001 |
Cr | 20.275 b ± 0.970 | 17.602 a ± 0.827 | 21.405 b ± 0.970 | 26.866 ± 1.013 c | <0.0001 |
Cu | 29.946 a ± 1.296 | 32.632 a ± 0.843 | 32.511 a ± 2.042 | 50.764 b ± 0.853 | <0.0001 |
Fe | 300.369 c ± 0.811 | 291.713 a,b ± 1.998 | 295.074 b ± 2.666 | 290.366 a ± 0.033 | 0.0004 |
Mg | 2.470 ± 0.283 | 2.08 ± 0.313 | 1.964 ± 0.043 | 1.677 ± 0.506 | 0.0969 |
Mn | 180.287 b ± 1.98 | 90.484 a ± 1.152 | 281.015 c ± 0.420 | 291.469 d ± 3.250 | <0.0001 |
Mo | 1.133 a ± 0.107 | 1.560 a ± 0.084 | 2.233 b ± 0.289 | 3.634 c ± 0.164 | <0.0001 |
Ni | 4.014 a ± 0.033 | 4.197 a ± 0.330 | 4.229 a ± 0.230 | 5.475 b ± 0.216 | 0.0002 |
P | ND | ND | ND | ND | ND |
Se | <LOD | <LOD | <LOD | <LOD | ND |
Zn | 87.495 c ± 1.160 | 76.320 b ± 2.100 | 68.889 a ± 0.829 | 100.027 d ± 1.267 | <0.0001 |
Pb | 2.077 a ± 0.157 | 3.3115 b ± 0.316 | 6.016 c ± 0.679 | 8.762 d ± 0.282 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, F.Z.V.; de Souza, I.D.; Garcia, D.A.Z.; Arakaki, D.G.; Medeiros, C.S.d.A.; Ancel, M.A.P.; Melo, E.S.d.P.; do Nascimento, V.A. Faeces of Capybara (Hydrochoerus hydrochaeris) as a Bioindicator of Contamination in Urban Environments in Central-West Brazil. Urban Sci. 2024, 8, 151. https://doi.org/10.3390/urbansci8040151
Batista FZV, de Souza ID, Garcia DAZ, Arakaki DG, Medeiros CSdA, Ancel MAP, Melo ESdP, do Nascimento VA. Faeces of Capybara (Hydrochoerus hydrochaeris) as a Bioindicator of Contamination in Urban Environments in Central-West Brazil. Urban Science. 2024; 8(4):151. https://doi.org/10.3390/urbansci8040151
Chicago/Turabian StyleBatista, Felipe Zampieri Vieira, Igor Domingos de Souza, Diego Azevedo Zoccal Garcia, Daniela Granja Arakaki, Cláudia Stela de Araújo Medeiros, Marta Aratuza Pereira Ancel, Elaine Silva de Pádua Melo, and Valter Aragão do Nascimento. 2024. "Faeces of Capybara (Hydrochoerus hydrochaeris) as a Bioindicator of Contamination in Urban Environments in Central-West Brazil" Urban Science 8, no. 4: 151. https://doi.org/10.3390/urbansci8040151
APA StyleBatista, F. Z. V., de Souza, I. D., Garcia, D. A. Z., Arakaki, D. G., Medeiros, C. S. d. A., Ancel, M. A. P., Melo, E. S. d. P., & do Nascimento, V. A. (2024). Faeces of Capybara (Hydrochoerus hydrochaeris) as a Bioindicator of Contamination in Urban Environments in Central-West Brazil. Urban Science, 8(4), 151. https://doi.org/10.3390/urbansci8040151