Innovative Strategies for Bio-Waste Collection in Major Cities during the COVID-19 Pandemic: A Comprehensive Model for Sustainable Cities—The City of Athens Experience
Abstract
:1. Introduction
2. Literature Review
3. Methods for Making Strategic Decisions for an Optimal Municipal Bio-Waste Collection Network in a Major City such as Athens
3.1. Method Research Structure—Scientific Questions or/Research Objectives
3.2. Applying the Decision-Making Methodology in the City of Athens
- R1 = 0.628/(0.628 + 0.694) = 0.475
- R2 = 0.677/(0.677 + 0.494) = 0.578
- R3 = 0.688/(0.688 + 0.683) = 0.502
3.3. Evaluation Methodology Description
4. The Strategic Implementation and Evaluation of the Large-scale Bio-Waste Producers System: A Case Study in Athens
4.1. Optimizing Processes: The Methodological Framework for Large-scale Bio-Waste Producers System
4.2. Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M.; Brunori, G.; Chiaramonti, D.; Matthews, R.; Panoutsou, C.; Fritsche, U.R. Bioeconomy and green recovery in a post-COVID-19 era. Sci. Total Environ. 2022, 808, 152180. [Google Scholar] [CrossRef] [PubMed]
- The European Environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe. Available online: https://www.eea.europa.eu/soer/2020 (accessed on 8 December 2022).
- Cities and Circular Economy for Food. Available online: https://ellenmacarthurfoundation.org/cities-and-circular-economy-for-food (accessed on 13 December 2022).
- Tirziu, A.-M. Urbanization and cities of the future. Int. J. Innov. Educ. Res. 2020, 8, 235–245. [Google Scholar] [CrossRef]
- Haque, M.S.; Uddin, S.; Sayem, S.M.; Mohib, K.M. Coronavirus disease 2019 (COVID-19) induced waste scenario: A short overview. J. Environ. Chem. Eng. 2021, 9, 104660. [Google Scholar] [CrossRef]
- Singh, E.; Kumar, A.; Mishra, R.; Kumar, S. Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere 2022, 288, 132451. [Google Scholar] [CrossRef]
- Mahyari, K.F.; Sun, Q.; Klemes, J.J.; Aghbashlo, M.; Tabatabaei, M.; Khoshnevisan, B.; Birkved, M. To what extent do waste management strategies need adaptation to post-COVID-19? Sci. Total Environ. 2022, 837, 155829. [Google Scholar] [CrossRef]
- Snellinx, S.; Van Meensel, J.; Farahbakhsh, S.; Bourgeois, L.; Mertens, A.; Lauwers, L.; Buysse, J. Waste treatment company decision-making in a complex system of markets influenced by the circular economy. J. Clean. Prod. 2021, 328, 129672. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Samal, B.; Cheela, V.R.S.; Dubey, B.K.; Bhattacharya, J. Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery. Sci. Total Environ. 2021, 800, 149605. [Google Scholar] [CrossRef]
- Ismail, M.H.; Ghazi, T.I.M.; Hamzah, M.H.; Manaf, L.A.; Tahir, R.M.; Nasir, A.M.; Omar, A.E. Impact of Movement Control Order (MCO) due to Coronavirus Disease (COVID-19) on Food Waste Generation: A Case Study in Klang Valley, Malaysia. Sustainability 2020, 12, 8848. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Appolloni, A.; Treiblmaier, H.; Iranmanesh, M. Circular Economy Research in the COVID-19 Era: A Review and the Road Ahead. Circ. Econ. Sustain. 2023, 3, 1–31. [Google Scholar] [CrossRef]
- Xevgenos, D.; Papadaskalopoulou, C.; Panaretou, V.; Moustakas, K.; Malamis, D. Success Stories for Recycling of MSW at Municipal Level: A Review. Waste Biomass Valorization 2015, 6, 657–684. [Google Scholar] [CrossRef]
- Bernache-Pérez, G.; De Medina-Salas, L.; Castillo-González, E.; Giraldi-Díaz, M.R. Strategies to Strengthen Integrated Solid Waste Management in Small Municipalities. Sustainability 2023, 15, 4318. [Google Scholar] [CrossRef]
- Laso, J.; García-Herrero, I.; Margallo, M.; Bala, A.; Fullana-I-Palmer, P.; Irabien, A.; Aldaco, R. LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain. Energies 2019, 12, 1407. [Google Scholar] [CrossRef]
- Schüch, A.; Morscheck, G.; Lemke, A.; Nelles, M. Bio-waste Recycling in Germany—Further Challenges. Procedia Env. Ment. Sci. 2016, 35, 308–318. [Google Scholar] [CrossRef]
- Demichelis, F.; Piovano, F.; Fiore, S. Biowaste Management in Italy: Challenges and Perspectives. Sustainability 2019, 11, 4213. [Google Scholar] [CrossRef]
- Zaleski, P.; Chawla, Y. Circular Economy in Poland: Profitability Analysis for Two Methods of Waste Processing in Small Municipalities. Energies 2020, 13, 5166. [Google Scholar] [CrossRef]
- Vea, E.B.; Martinez-Sanchez, V.; Thomsen, M. A Review of Waste Management Decision Support Tools and Their Ability to Assess Circular Biowaste Management Systems. Sustainability 2018, 10, 3720. [Google Scholar] [CrossRef]
- Seruga, P. The Municipal Solid Waste Management System with Anaerobic Digestion. Energies 2021, 14, 2067. [Google Scholar] [CrossRef]
- Sulewski, P.; Kais, K.; Gołaś, M.; Rawa, G.; Urbańska, K.; Was, A. Home Bio-Waste Composting for the Circular Economy. Energies 2021, 14, 6164. [Google Scholar] [CrossRef]
- Zaikova, A.; Deviatkin, I.; Havukainen, J.; Horttanainen, M.; Astrup, T.F.; Saunila, M.; Happonen, A. Factors Influencing Household Waste Separation Behavior: Cases of Russia and Finland. Recycling 2022, 7, 52. [Google Scholar] [CrossRef]
- Delgado, M.; López, A.; Cuartas, M.; Rico, C.; Lobo, A. A decision support tool for planning biowaste management systems. J. Clean. Prod. 2020, 242, 118460. [Google Scholar] [CrossRef]
- Taffuri, A.; Sciullo, A.; Diemer, A.; Nedelciu, C.E. Integrating Circular Bioeconomy and Urban Dynamics to Define an Innovative Management of Bio-Waste: The Study Case of Turin. Sustainability 2021, 13, 6224. [Google Scholar] [CrossRef]
- Separate Collection of Municipal Waste. Available online: https://www.edsna.gr/choristi-syllogi-apovliton/ (accessed on 30 January 2023).
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2012, 30, 401–422. [Google Scholar] [CrossRef]
- Marino, A.; Pariso, P. Comparing European countries’ performances in the transition towards the Circular Economy. Sci. Total Environ. 2020, 729, 138142. [Google Scholar] [CrossRef] [PubMed]
- Weymouth, R.; Hartz-Karp, J. Principles for Integrating the Implementation of the Sustainable Development Goals in Cities. Urban Sci. 2018, 2, 77. [Google Scholar] [CrossRef]
- Uzun Ozsahin, D.; Gökçekuş, H.; Uzun, B.; LaMoreaux, J. (Eds.) Professional Practice in Earth Sciences Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering (Professional Practice in Earth Sciences), 1st ed.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Malamis, D.; Bourka, A.; Stamatopoulou, E.; Moustakas, K.; Skiadi, O.; Loizidou, M. Study and assessment of segregated biowaste composting: The case study of Attica municipalities. J. Environ. Manag. 2017, 203, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Permanent Population—Results of the 2021 Census of Population—Housing. Available online: https://www.statistics.gr/el/2021-census-res-pop-results (accessed on 24 January 2023).
- Ancillary Equipment|Kaoussis®. Available online: http://kaoussis.gr/refuse-vehicles/ancillary-equipment (accessed on 16 March 2023).
- Athens Municipal Council 5th Meeting 09-03-2020. Available online: https://diavgeia.gov.gr/decision/view/%CE%A8%CE%9E8%CE%A4%CE%A96%CE%9C-%CE%9D%CE%94%CE%94 (accessed on 17 July 2023).
Alternative | Policy and Regulatory Compliance | Stakeholder Preferences | Social Acceptance | Environmental Impact | Public Perception | Economic Viability |
---|---|---|---|---|---|---|
A1 | 0.85 | 0.90 | 0.75 | 0.80 | 0.70 | 0.60 |
A2 | 0.75 | 0.85 | 0.80 | 0.60 | 0.80 | 0.65 |
A3 | 0.80 | 0.70 | 0.85 | 0.70 | 0.75 | 0.70 |
Alternative | Policy and Regulatory Compliance | Stakeholder Preferences | Social Acceptance | Environmental Impact | Public Perception | Economic Viability |
---|---|---|---|---|---|---|
A1 | 0.354 | 0.367 | 0.313 | 0.381 | 0.311 | 0.308 |
A2 | 0.313 | 0.347 | 0.333 | 0.286 | 0.356 | 0.333 |
A3 | 0.333 | 0.286 | 0.354 | 0.333 | 0.333 | 0.359 |
Alternative | Policy and Regulatory Compliance (W1 = 0.25) | Stakeholder Preferences (W2 = 0.20) | Social Acceptance (W3 = 0.15) | Environmental Impact (W4 = 0.20) | Public Perception (W5 = 0.10) | Economic Viability (W6 = 0.10) |
---|---|---|---|---|---|---|
A1 | 0.089 | 0.073 | 0.047 | 0.076 | 0.031 | 0.031 |
A2 | 0.078 | 0.070 | 0.050 | 0.057 | 0.036 | 0.033 |
A3 | 0.083 | 0.057 | 0.053 | 0.067 | 0.033 | 0.036 |
Alternative | Separation from PIS | Separation from NIS |
---|---|---|
A1 | 0.694 | 0.628 |
A2 | 0.494 | 0.677 |
A3 | 0.683 | 0.688 |
Model for optimizing the network |
Maximization of Category: Results ↑ |
Minimization of Category: Cost ↓ |
Descriptive indicators | 2020 | 2021 | 2022 | ||
D0 | 0.66% | 1.01% | 1.20% | Collected bio-waste compared to the total amount of generated MSW (%) | |
D1 | 1.76 | 2.10 | 2.58 | Annual amount of collected bio-waste per itinerary (tn) | |
D2 | 128.70 | 88.34 | 80.42 | Annual amount of person-hours spent on collecting a bio-waste bin (h) | |
D3 | 21.47 | 17.15 | 14.01 | Vehicle operation hours for the collection of bio-waste bins (h) |
Performance indicators | 2020 | 2021 | 2022 | ||
P1 | 10.95 | 10.42 | 10.46 | Quantity of collected bio-waste relative to that available | |
P2 | 0.05 | 0.07 | 0.07 | Quantity of collected bio-waste per working hour (tn/h) | |
P3 | 0.29 | 0.35 | 0.43 | Collected bio-waste per hour of collection vehicle operation (tn/h) |
Economic indicators | 2020 | 2021 | 2022 | ||
E1 | 0.00 | 0.00 | 0.00 | Cost of the collection means per total collected bio-waste (EUR/ton) | |
E2 | 173.16 | 124.84 | 113.29 | Cost of personnel per total collected bio-waste (EUR/ton) | |
E3 | 17.87 | 14.99 | 12.21 | Cost of vehicle operating per total collected bio-waste (EUR/ton) | |
E4 | 191.03 | 139.84 | 125.50 | Total cost (EUR/ton) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepetis, A.; Georgantas, K.; Nikolaou, I. Innovative Strategies for Bio-Waste Collection in Major Cities during the COVID-19 Pandemic: A Comprehensive Model for Sustainable Cities—The City of Athens Experience. Urban Sci. 2024, 8, 80. https://doi.org/10.3390/urbansci8030080
Sepetis A, Georgantas K, Nikolaou I. Innovative Strategies for Bio-Waste Collection in Major Cities during the COVID-19 Pandemic: A Comprehensive Model for Sustainable Cities—The City of Athens Experience. Urban Science. 2024; 8(3):80. https://doi.org/10.3390/urbansci8030080
Chicago/Turabian StyleSepetis, Anastasios, Konstantinos Georgantas, and Ioannis Nikolaou. 2024. "Innovative Strategies for Bio-Waste Collection in Major Cities during the COVID-19 Pandemic: A Comprehensive Model for Sustainable Cities—The City of Athens Experience" Urban Science 8, no. 3: 80. https://doi.org/10.3390/urbansci8030080
APA StyleSepetis, A., Georgantas, K., & Nikolaou, I. (2024). Innovative Strategies for Bio-Waste Collection in Major Cities during the COVID-19 Pandemic: A Comprehensive Model for Sustainable Cities—The City of Athens Experience. Urban Science, 8(3), 80. https://doi.org/10.3390/urbansci8030080