House Sparrow Nesting Site Selection in Urban Environments: A Multivariate Approach in Mediterranean Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. House Sparrow Nest Surveys
2.3. Nest and Habitat Characterization
2.4. Statistical Analyses
2.4.1. Nest Site Selection
Group | Variable | Category | Sampled | Description |
---|---|---|---|---|
Building features | Year | Numerical | SEC | Year of building construction |
Reform | Categorical (2) | SEC | Presence/absence of reform/improvement in the building | |
Building | Categorical (4) | In situ | Flat, House, Detached House, Industrial warehouse | |
Floors | Numerical | In situ | Number of floors of the building | |
Roof | Categorical (5) | In situ | Open Arabic roof tiles, Closed Arabic roof tiles, No tiles, Plain roof tiles, Asbestos/metal sheet roof (Figure S1) | |
Facade | Categorical (4) | In situ | Plain, Metal sheet, Exposed (bricks/stones), Mixed | |
Holes | Categorical (2) | In situ | Presence/absence of holes in the building | |
Gutter | Categorical (2) | In situ | Presence/absence of gutter under the tiles of the building | |
Eaves | Categorical (2) | In situ | Presence/absence of eaves in the building | |
Tree | Categorical (2) | In situ | Presence/absence of trees (>3 m) in the street | |
Garden | Categorical (2) | In situ | Presence/absence of private gardens in the building | |
Terrace | Categorical (2) | In situ | Presence/absence of terraces in the building | |
Nests_Du | Categorical (2) | In situ | Presence/absence of Delichon urbicum nests in the building [45] | |
Location features | D_limit | Numerical | SIGPAC | Distance in metres to the closest urbanized area limit |
D_school | Numerical | SIGPAC | Distance in metres to the closest school | |
D_crop | Numerical | SIGPAC | Distance in metres to the closest crop | |
D_park | Numerical | SIGPAC | Distance in metres to the closest urban park | |
D_plot | Numerical | SIGPAC | Distance in metres to the closest vacant plot | |
D_container | Numerical | SIGPAC | Distance in metres to the closest rubbish container | |
Nest (only for nest points) | Nest placement | Categorical (10) | In situ | Arabic clay tile, flat tile, open clay tile, asbestos, beam, hole, ornament, slot, tube, Delichon urbicum nest |
2.4.2. Differences in Nest Placement between Urban Sectors
3. Results
3.1. Nest Site Selection
3.2. Differences in Nest Placement between Urban Sectors
4. Discussion
4.1. Nest Site Selection
4.2. Differences in Nest Placement between Urban Sectors
4.3. Urban Management for Nesting Suitability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murgui, E.; Hedblom, M. Ecology and Conservation of Birds in Urban Environments; Springer: New York, NY, USA, 2017. [Google Scholar]
- Marzluff, J.M. A Decadal Review of Urban Ornithology and a Prospectus for the Future. Ibis 2017, 159, 1–13. [Google Scholar] [CrossRef]
- Croci, S.; Butet, A.; Clergeau, P. Does Urbanization Filter Birds on the Basis of Their Biological Traits? Condor 2008, 110, 223–240. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban Ecological Systems: Scientific Foundations and a Decade of Progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef]
- Isaksson, C. Impact of Urbanization on Birds. In Bird Species. How They Arise, Modify and Vanish; Tietze, D.T., Ed.; Springer Open: Cham, Switzerland, 2018; pp. 235–257. [Google Scholar]
- Bernat-Ponce, E.; Gil-Delgado, J.A.; López-Iborra, G.M. Recreational Noise Pollution of Traditional Festivals Reduces the Juvenile Productivity of an Avian Urban Bioindicator. Environ. Pollut. 2021, 286, 117247. [Google Scholar] [CrossRef]
- Evans, K.L.; Chamberlain, D.E.; Hatchwell, B.J.; Gregory, R.D.; Gaston, K.J. What Makes an Urban Bird? Glob. Chang. Biol. 2011, 17, 32–44. [Google Scholar] [CrossRef]
- Marzluff, J.M. Birds in European Cities. Condor 2007, 109, 224–226. [Google Scholar] [CrossRef]
- Francis, R.A.; Chadwick, M.A. What Makes a Species Synurbic? Appl. Geogr. 2012, 32, 514–521. [Google Scholar] [CrossRef]
- Bernat-Ponce, E.; Gil-Delgado, J.A.; López-Iborra, G.M. Replacement of Semi-Natural Cover with Artificial Substrates in Urban Parks Causes a Decline of House Sparrows Passer domesticus in Mediterranean Towns. Urban Ecosyst. 2020, 23, 471–481. [Google Scholar] [CrossRef]
- Gil, D.; Brumm, H. Avian Urban Ecology; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Bernat-Ponce, E.; Gil-Delgado, J.A.; López-Iborra, G.M. Efectos de Las Características de Las Ciudades Occidentales Contemporáneas Sobre La Avifauna Urbana. Ecosistemas 2022, 31, 2158. [Google Scholar] [CrossRef]
- Ryder, T.B.; Reitsma, R.; Evans, B.; Marra, P.P. Quantifying Avian Nest Survival along an Urbanization Gradient Using Citizen- and Scientist-generated Data. Ecol. Appl. 2010, 20, 419–426. [Google Scholar] [CrossRef]
- Ye, P.; Yang, C.; Liang, W. Nest Site Availability and Niche Differentiation between Two Cavity-nesting Birds in Time and Space. Ecol. Evol. 2019, 9, 11904–11910. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.M.; Goodman, A.M.; Deeming, D.C. Air Movement Affects Insulatory Values of Nests Constructed by Old World Warblers. J. Therm. Biol. 2019, 81, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Mainwaring, M.C.; Hartley, I.R.; Lambrechts, M.M.; Deeming, D.C. The Design and Function of Birds’ Nests. Ecol. Evol. 2014, 4, 3909–3928. [Google Scholar] [CrossRef]
- Fogarty, D.T.; Elmore, R.D.; Fuhlendorf, S.D.; Loss, S.R. Influence of Olfactory and Visual Cover on Nest Site Selection and Nest Success for Grassland-nesting Birds. Ecol. Evol. 2017, 7, 6247–6258. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.L.; Olson, C.V.; Dzialak, M.R.; Harju, S.M.; Winstead, J.B.; Lockman, D. Landscape Features and Weather Influence Nest Survival of a Ground-Nesting Bird of Conservation Concern, the Greater Sage-Grouse, in Human-Altered Environments. Ecol. Process. 2012, 1, 4. [Google Scholar] [CrossRef]
- Newton, I. The Role of Nest Sites in Limiting the Numbers of Hole-Nesting Birds: A Review. Biol. Conserv. 1994, 70, 265–276. [Google Scholar] [CrossRef]
- Salaberria, C.; Celis, P.; López-Rull, I.; Gil, D. Effects of Temperature and Nest Heat Exposure on Nestling Growth, Dehydration and Survival in a Mediterranean Hole-nesting Passerine. Ibis 2014, 156, 265–275. [Google Scholar] [CrossRef]
- Young, C.M.; Cain, K.E.; Svedin, N.; Backwell, P.R.Y.; Pryke, S.R. Nesting Success in Crimson Finches: Chance or Choice? Ethology 2017, 123, 41–50. [Google Scholar] [CrossRef]
- Stephens, S.E.; Koons, D.N.; Rotella, J.J.; Willey, D.W. Effects of Habitat Fragmentation on Avian Nesting Success: A Review of the Evidence at Multiple Spatial Scales. Biol. Conserv. 2004, 115, 101–110. [Google Scholar] [CrossRef]
- Catry, I.; Franco, A.M.A.; Rocha, P.; Alcazar, R.; Reis, S.; Cordeiro, A.; Ventim, R.; Teodósio, J.; Moreira, F. Foraging Habitat Quality Constrains Effectiveness of Artificial Nest-Site Provisioning in Reversing Population Declines in a Colonial Cavity Nester. PLoS ONE 2013, 8, e58320. [Google Scholar] [CrossRef]
- Cramp, S.; Perrins, C.M. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Vol. VIII. Crows to Finches; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Summers-Smith, J.D. The Decline of the House Sparrow: A Review. Br. Birds 2003, 96, 439–446. [Google Scholar]
- Anderson, T.J. Biology of the Ubiquitous House Sparrow: From Genes to Populations; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Lindenmayer, D.B.; Wood, J.T.; McBurney, L.; MacGregor, C.; Youngentob, K.; Banks, S.C. How to Make a Common Species Rare: A Case against Conservation Complacency. Biol. Conserv. 2011, 144, 1663–1672. [Google Scholar] [CrossRef]
- Indykiewicz, P. Nests and Nest-Sites of the House Sparrow Passer domesticus (Linnaeus, 1758) in Urban, Suburban and Rural Environments. Acta Zool. Crac. 1991, 34, 475–495. [Google Scholar]
- Bell, C.P. Misapplied Ecology: Investigations of Population Decline in the House Sparrow. Int. Stud. Sparrows 2011, 35, 24–34. [Google Scholar] [CrossRef]
- Mohring, B.; Henry, P.-Y.; Jiguet, F.; Malher, F.; Angelier, F. Investigating Temporal and Spatial Correlates of the Sharp Decline of an Urban Exploiter Bird in a Large European City. Urban Ecosyst. 2021, 24, 501–513. [Google Scholar] [CrossRef]
- Ramos-Elvira, E.; Banda, E.; Arizaga, J.; Martín, D.; Aguirre, J.I. Long-Term Population Trends of House Sparrow and Eurasian Tree Sparrow in Spain. Birds 2023, 4, 159–170. [Google Scholar] [CrossRef]
- Shaw, L.M.; Chamberlain, D.; Evans, M. The House Sparrow Passer domesticus in Urban Areas: Reviewing a Possible Link between Post-Decline Distribution and Human Socioeconomic Status. J. Ornithol. 2008, 149, 293–299. [Google Scholar] [CrossRef]
- Summers-Smith, J.D. Is Unleaded Petrol a Factor in the Decline of Urban House Sparrow Decline? Br. Birds 2007, 100, 558–559. [Google Scholar]
- Peach, W.J.; Mallord, J.W.; Ockendon, N.; Orsman, C.J.; Haines, W.G. Depleted Suburban House Sparrow Passer domesticus Population Not Limited by Food Availability. Urban Ecosyst. 2018, 21, 1053–1065. [Google Scholar] [CrossRef]
- Dadam, D.; Robinson, R.A.; Clements, A.; Peach, W.J.; Bennett, M.; Rowcliffe, J.M.; Cunningham, A.A. Avian Malaria-Mediated Population Decline of a Widespread Iconic Bird Species. R. Soc. Open Sci. 2019, 6, 182197. [Google Scholar] [CrossRef]
- Jiménez-Peñuela, J.; Ferraguti, M.; Martínez-de La Puente, J.; Soriguer, R.; Figuerola, J. Urbanization and Blood Parasite Infections Affect the Body Condition of Wild Birds. Sci. Total Environ. 2019, 651, 3015–3022. [Google Scholar] [CrossRef]
- Herrera-Dueñas, A. The Influence of Urban Environments on Oxidative Stress Balance: A Case Study on the House Sparrow in the Iberian Peninsula. Front. Ecol. Evol. 2017, 5, 10. [Google Scholar] [CrossRef]
- Bernat-Ponce, E.; Gil-Delgado, J.A.; Guardiola, J.V.; López-Iborra, G.M. Eating in the City: Experimental Effect of Anthropogenic Food Resources on the Body Condition, Nutritional Status, and Oxidative Stress of an Urban Bioindicator Passerine. J. Exp. Zool. Part Ecol. Integr. Physiol. 2023, 339, 803–815. [Google Scholar] [CrossRef]
- Murgui, E.; Macias, A. Changes in the House Sparrow Passer domesticus Population in Valencia (Spain) from 1998 to 2008. Bird Study 2010, 57, 281–288. [Google Scholar] [CrossRef]
- Woods, M.; Mcdonald, R.A.; Harris, S. Predation of Wildlife by Domestic Cats Felis catus in Great Britain. Mammal Rev. 2003, 33, 174–188. [Google Scholar] [CrossRef]
- Bell, C.P.; Baker, S.W.; Parkes, N.G.; Brooke, M.D.L.; Chamberlain, D.E. The Role of the Eurasian Sparrowhawk (Accipiter nisus) in the Decline of the House Sparrow (Passer domesticus) in Britain. Auk 2010, 127, 411–420. [Google Scholar] [CrossRef]
- Moudrá, L.; Zasadil, P.; Moudrý, V.; Šálek, M. What Makes New Housing Development Unsuitable for House Sparrows (Passer domesticus)? Landsc. Urban Plan. 2018, 169, 124–130. [Google Scholar] [CrossRef]
- Kulczycki, A.; Mazur-Gierasinska, M. Nesting of House Sparrow Passer domesticus (Linnaeus, 1758). Acta Zool. Crac. 1968, 13, 231–250. [Google Scholar]
- Cordero, P.J.; Rodríguez-Teijeiro, J.D. Spatial Segregation and Interaction between House Sparrows and Tree Sparrows (Passer spp.) in Relation to Nest Site. Ekol. Pol. 1990, 38, 443–452. [Google Scholar]
- Murgui, E. Gorrión Común—Passer domesticus (Linnaeus, 1758). In Enciclopedia Virtual de los Vertebrados Españoles; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2016; Available online: https://www.vertebradosibericos.org/aves/pasdom.html (accessed on 15 January 2023).
- Wotton, S.R.; Field, R.; Langston, R.H.W.; Gibbons, D.W. Homes for Birds: The Use of Houses for Nesting by Birds in the UK. Br. Birds 2002, 95, 586–592. [Google Scholar]
- European Comission Long-Term Renovation Strategies. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/long-term-renovation-strategies_en (accessed on 10 December 2023).
- Singh, R.; Kour, D.N.; Ahmad, F.; Sahi, D.N. The Causes of Decline of House Sparrow (Passer domesticus, Linnaeus 1758) in Urban and Suburban Areas of Jammu Region, J & K. Mun. Ent. Zool. 2013, 8, 803–811. [Google Scholar]
- Bernat-Ponce, E.; Gil-Delgado, J.A.; Guijarro, D. Factors Affecting the Abundance of House Sparrows Passer domesticus in Urban Areas of Southeast of Spain. Bird Study 2018, 65, 404–416. [Google Scholar] [CrossRef]
- Pérez-Cueva, A.J. Atlas Climàtic de La Comunitat Valenciana (1961–1990); Col·lecció Territori; Conselleria d’Obres Publiques, Urbanisme i Transports: València, Spain, 1994. [Google Scholar]
- Martínez-Pérez, J.E. Caracterización Ambiental de La Provincia de Alicante. In Atlas de Las Aves Nidificantes en la Provincia de Alicante; López Iborra, G.M., Bañuls Patiño, A., Zaragozí Llenes, A., Sala Bernabeu, J., Izquierdo Rosique, A., Martínez Pérez, J.E., Ramos Sánchez, J., Bañuls Patiño, D., Arroyo Morcillo, S., Sánchez Zapata, J.A., et al., Eds.; Publicacions de la Universitat d’Alacant—SEO/Alicante: Alicante, Spain, 2015; pp. 17–40. [Google Scholar]
- AVAMET. Associació Valenciana de Meterorologia. Dades Històriques. Available online: https://www.avamet.org/# (accessed on 1 February 2018).
- Instituto Nacional de Estadística. Cifras Oficiales de Población de Los Municipios Españoles En Aplicación de La Ley de Bases Del Régimen Local (Art. 17) Detalle Municipal. Alicante/Alacant: Población Por Municipios y Sexo. Available online: http://www.ine.es/jaxiT3/Tabla.htm?t=2856&L=0 (accessed on 1 February 2018).
- Gil-Delgado, J.A.; Pardo, R.; Bellot, J.; Lucas, I. Avifauna Del Naranjal Valenciano. II: El Gorrión Común (Passer domesticus L.). Mediterr. Ser. Estud. Biol. 1979, 3, 69–99. [Google Scholar] [CrossRef]
- De Laet, J.; Summers-Smith, J.D. Protocol for Censusing Urban Sparrows. Br. Birds 2011, 104, 255–260. [Google Scholar]
- QGIS. Quantum GIS Geographic Information System. Las Palmas de Gran Canaria. 2017. Available online: https://qgis.org/ (accessed on 1 February 2017).
- De Laet, J.; Summers-Smith, J.D. The Status of the Urban House Sparrow Passer domesticus in North-Western Europe: A Review. J. Ornithol. 2007, 148, 275–278. [Google Scholar] [CrossRef]
- SIGPAC. Visor SigPac. Ministerio de Agricultura, Alimentación y Medio Ambiente. 2017. Available online: https://sigpac.mapa.es/fega/visor/ (accessed on 1 February 2017).
- Sede Electrónica del Catastro. Buscador de Inmuebles y Visor Cartográfico. Available online: https://www.sedecatastro.gob.es/ (accessed on 20 July 2017).
- Marco-Tresserras, J.; López-Iborra, G.M. Nesting Ecology of European Hedgehogs (Erinaceus europaeus) in Urban Areas in Southeast Spain: Nest Habitat Use and Characteristics. Animals 2023, 13, 2453. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378. [Google Scholar] [CrossRef]
- Gomes, D.G.E. Should I Use Fixed Effects or Random Effects When I Have Fewer than Five Levels of a Grouping Factor in a Mixed-Effects Model? PeerJ 2022, 10, e12794. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publications Inc.: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package. 2022. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 15 March 2024).
- Kendal, D.; Williams, N.S.G.; Williams, K.J.H. Drivers of Diversity and Tree Cover in Gardens, Parks and Streetscapes in an Australian City. Urban For. Urban Green. 2012, 11, 257–265. [Google Scholar] [CrossRef]
- Marlès Magre, J.; Boada Juncà, M.; Campanera, J.M.; Bach Pagès, A.; Ruiz Mallén, I.; Maneja Zaragoza, R.; Sánchez Mateo, S.; Pallarès Barberà, M.; Barriocanal Lozano, C. How Urban Green Management Is Influencing Passerine Birds’ Nesting in the Mediterranean: A Case Study in a Catalan City. Urban For. Urban Green. 2019, 41, 221–229. [Google Scholar] [CrossRef]
- Lequerica Tamara, M.E.; Latty, T.; Threlfall, C.G.; Hochuli, D.F. Major Insect Groups Show Distinct Responses to Local and Regional Attributes of Urban Green Spaces. Landsc. Urban Plan. 2021, 216, 104238. [Google Scholar] [CrossRef]
- Vincent, K.E. Investigating the Causes of the Decline of the Urban House Sparrow Passer domesticus Population in Britain; De Montfort University: Leicester, UK, 2005. [Google Scholar]
- Wilkinson, N. Factors Influencing the Small-Scale Distribution of House Sparrows Passer domesticus in a Suburban Environment. Bird Study 2006, 53, 39–46. [Google Scholar] [CrossRef]
- Peach, W.J.; Mallord, J.W.; Ockendon, N.; Orsman, C.J.; Haines, W.G. Invertebrate Prey Availability Limits Reproductive Success but Not Breeding Population Size in Suburban House Sparrows Passer domesticus. Ibis 2015, 157, 601–613. [Google Scholar] [CrossRef]
- Meillère, A.; Brischoux, F.; Henry, P.-Y.; Michaud, B.; Garcin, R.; Angelier, F. Growing in a City: Consequences on Body Size and Plumage Quality in an Urban Dweller, the House Sparrow (Passer domesticus). Landsc. Urban Plan. 2017, 160, 127–138. [Google Scholar] [CrossRef]
- Rega-Brodsky, C.C.; Nilon, C.H. Vacant Lots as a Habitat Resource: Nesting Success and Body Condition of Songbirds. Ecosphere 2016, 7, e01578. [Google Scholar] [CrossRef]
- Murgui, E. Seasonal Patterns of Habitat Selection of the House Sparrow Passer domesticus in the Urban Landscape of Valencia (Spain). J. Ornithol. 2009, 150, 85–94. [Google Scholar] [CrossRef]
- Li, D.; Chiang, Y.-C.; Sang, H.; Sullivan, W.C. Beyond the School Grounds: Links between Density of Tree Cover in School Surroundings and High School Academic Performance. Urban For. Urban Green. 2019, 38, 42–53. [Google Scholar] [CrossRef]
- Spelt, A.; Soutar, O.; Williamson, C.; Memmott, J.; Shamoun-Baranes, J.; Rock, P.; Windsor, S. Urban Gulls Adapt Foraging Schedule to Human-activity Patterns. Ibis 2021, 163, 274–282. [Google Scholar] [CrossRef]
- Gavett, A.P.; Wakeley, J.S. Diets of House Sparrows in Urban and Rural Habitats. Wilson Bull. 1987, 98, 137–144. [Google Scholar]
- Šálek, M.; Riegert, J.; Grill, S. House Sparrows Passer domesticus and Tree Sparrows Passer montanus: Fine-Scale Distribution, Population Densities, and Habitat Selection in a Central European City. Acta Ornithol. 2015, 50, 221–232. [Google Scholar] [CrossRef]
- Dulisz, B.; Stawicka, A.M.; Knozowski, P.; Diserens, T.A.; Nowakowski, J.J. Effectiveness of Using Nest Boxes as a Form of Bird Protection after Building Modernization. Biodivers. Conserv. 2022, 31, 277–294. [Google Scholar] [CrossRef]
- Pike, M.; Spennemann, D.H.R.; Watson, M.J. Building Use by Urban Commensal Avifauna in Melbourne Central Business District, Australia. Emu Austral Ornithol. 2017, 117, 284–289. [Google Scholar] [CrossRef]
- Nath, A.; Singha, H.; Haque, M.; Lahkar, B.P. Sparrows in Urban Complexity: Macro and Micro-Scale Habitat Use of Sympatric Sparrows in Guwahati City, India. Urban Ecosyst. 2019, 22, 1047–1060. [Google Scholar] [CrossRef]
- Jokimäki, J.; Suhonen, J.; Benedetti, Y.; Diaz, M.; Kaisanlahti-Jokimäki, M.; Morelli, F.; Pérez-Contreras, T.; Rubio, E.; Sprau, P.; Tryjanowski, P.; et al. Land-sharing vs. Land-sparing Urban Development Modulate Predator–Prey Interactions in Europe. Ecol. Appl. 2020, 30, e02049. [Google Scholar] [CrossRef]
- Sorace, A.; Petrassi, F.; Consiglio, C. Long-Distance Relocation of Nestboxes Reduces Nest Predation by Pine Marten Martes martes. Bird Study 2004, 51, 119–124. [Google Scholar] [CrossRef]
- Summers-Smith, J.D. The Sparrows; T & AD POYSER: Calton, UK, 1988. [Google Scholar]
- Sánchez-Sotomayor, D.; Martín-Higuera, A.; Gil-Delgado, J.A.; Gálvez, Á.; Bernat-Ponce, E. Artificial Grass in Parks as a Potential New Threat for Urban Bird Communities. Bird Conserv. Int. 2023, 33, e16. [Google Scholar] [CrossRef]
- SEO/BirdLife. Fauna Silvestre y Edificios. Guía Técnica Para CONSERVAR y fomentar la Biodiversidad en Obra Nueva y Rehabilitación. 2022. Available online: https://avesyedificios.seo.org/wp-content/uploads/2023/02/Fauna-silvestre-y-edificios.pdf (accessed on 20 April 2024).
- Sheldon, E.L.; Griffith, S.C. A High Incidence of Non-Cavity Nesting in an Introduced Population of House Sparrows Suggests That the Species Should Not Be Constrained by Cavity-Nest Site Availability. Avian Res. 2017, 8, 29. [Google Scholar] [CrossRef]
- Angelier, F.; Brischoux, F. Are House Sparrow Populations Limited by the Lack of Cavities in Urbanized Landscapes? An Experimental Test. J. Avian Biol. 2019, 50, jav.02009. [Google Scholar] [CrossRef]
Locality | Coordinates | Number of Inhabitants 2017 | Density (Inhabitants/km2) | Temperature 2017 (°C) | Rainfall 2017 (mm) | Altitude (m.a.s.l.) | Sectors of Study | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. | Mean | Min. | Old Town | Suburban/ Outskirts | Residential/ Commercial | Industrial | ||||||
Benilloba | 38°41′57″ N 0°23′28″ O | 755 | 80.95 | 40.1 | 15.4 | −5.2 | 594.7 | 520 | 1 | 0 | 0 | 0 |
Cocentaina | 38°46′47″ N 0°26′10″ O | 11,461 | 297.91 | 40.0 | 16.6 | −3.6 | 421.4 | 410 | 1 | 1 | 1 | 1 |
Alcoy | 38°41′54″ N 0°28′25″ O | 59,106 | 468.48 | 40.4 | 16.1 | −4.4 | 548.4 | 562 | 1 | 1 | 2 | 1 |
Nest Placement | Industrial | Old Town | Outskirts | Residential | Total |
---|---|---|---|---|---|
Arabic clay tile | 16 (33.3) | 208 (84.6) | 12 (13.3) | 90 (45.0) | 326 |
Open clay tile | 0 (0) | 7 (2.9) | 68 (75.6) | 27 (13.5) | 102 |
Tube | 4 (8.3) | 1 (0.41) | 4 (4.44) | 25 (12.5) | 34 |
Asbestos | 4 (8.3) | 6 (2.4) | 0 (0) | 23 (11.5) | 33 |
Hole | 11 (22.9) | 12 (4.9) | 2 (2.2) | 5 (2.5) | 30 |
Delichon urbicum nest | 1 (2.1) | 3 (1.2) | 0 (0) | 14 (7.0) | 18 |
Flat tile | 0 (0) | 1 (0.4) | 0 (0) | 13 (6.5) | 14 |
Ornament | 4 (8.3) | 8 (3.3) | 0 (0) | 1 (0.5) | 13 |
Beam | 7 (14.6) | 0 (0) | 0 (0) | 2 (1.0) | 9 |
Slot | 1 (2.1) | 0 (0) | 4 (4.4) | 0 (0) | 5 |
Total | 48 | 246 | 90 | 200 | 584 |
Dim.1 | Dim.2 | Dim.3 | Dim.4 | Dim.5 | Dim.6 | Dim.7 | Dim.8 | |
---|---|---|---|---|---|---|---|---|
eigenvalue | 3.834 | 3.280 | 2.199 | 1.687 | 1.439 | 1.215 | 1.132 | 1.114 |
Cumulative % of variance | 14.746 | 27.360 | 35.819 | 42.307 | 47.839 | 52.513 | 56.868 | 61.154 |
Continuous variables | ||||||||
Year | 0.266 | 0.243 | 0.558 | −0.267 | 0.402 | 0.043 | 0.078 | −0.100 |
Floors | −0.483 | 0.551 | −0.030 | −0.181 | −0.031 | 0.228 | 0.115 | 0.043 |
D_limit | −0.248 | 0.623 | −0.231 | 0.467 | 0.252 | −0.009 | 0.049 | −0.017 |
D_park | 0.820 | −0.134 | −0.047 | 0.068 | 0.091 | 0.102 | −0.057 | 0.100 |
D_school | 0.706 | −0.034 | −0.280 | 0.115 | −0.035 | −0.184 | −0.080 | 0.042 |
D_plot | −0.060 | 0.433 | −0.411 | 0.373 | 0.118 | 0.179 | 0.051 | 0.204 |
D_crop | −0.273 | 0.661 | −0.205 | 0.328 | 0.204 | 0.030 | −0.172 | 0.077 |
D_container | 0.289 | −0.293 | −0.037 | 0.174 | −0.072 | 0.318 | 0.256 | 0.458 |
Categorical variables | ||||||||
Building | 0.786 | 0.453 | 0.220 | 0.344 | 0.033 | 0.171 | 0.033 | 0.027 |
Eaves | 0.453 | 0.080 | 0.006 | 0.049 | 0.013 | 0.024 | 0.054 | |
Facade | 0.293 | 0.133 | 0.138 | 0.080 | 0.207 | 0.401 | 0.134 | |
Gutter | 0.195 | 0.288 | 0.062 | 0.021 | 0.146 | 0.019 | ||
Holes | 0.011 | 0.157 | 0.126 | 0.044 | 0.033 | |||
Nests_Du | 0.007 | 0.072 | 0.035 | 0.006 | 0.017 | 0.478 | 0.007 | |
Garden | 0.077 | 0.413 | 0.107 | 0.074 | 0.016 | 0.012 | ||
Reform | 0.015 | 0.161 | 0.208 | 0.045 | 0.173 | 0.011 | 0.040 | 0.007 |
Roof | 0.375 | 0.446 | 0.242 | 0.244 | 0.305 | 0.214 | 0.190 | 0.320 |
Terrace | 0.172 | 0.023 | 0.017 | 0.096 | 0.035 | 0.219 | ||
Tree | 0.161 | 0.009 | 0.008 | 0.005 | 0.055 | 0.138 |
Urban Sector | Dim.1 | Dim.2 | Dim.3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model Intercept | D1 Estimate | Model Intercept | D2 Estimate | Model Intercept | D3 Estimate | |||||||
Industrial | 1.998 | * | −0.524 | *** | −0.021 | −0.999 | *** | −0.002 | 0.619 | ** | ||
Old | 0.677 | * | −0.460 | ** | 0.865 | *** | −0.175 | * | 0.866 | *** | −0.251 | ** |
Outskirts | 0.508 | ** | −0.601 | *** | −0.178 | −0.723 | *** | 0.939 | * | −0.286 | ||
Residential | 0.317 | −0.530 | ** | 1.965 | *** | −0.703 | *** | 0.921 | *** | −0.839 | *** |
Dim.1 | Dim.2 | Dim.3 | Dim.4 | Dim.5 | Dim.6 | Dim.7 | Dim.8 | Dim.9 | Dim.10 | |
---|---|---|---|---|---|---|---|---|---|---|
eigenvalue | 3.437 | 2.388 | 2.259 | 1.752 | 1.616 | 1.546 | 1.368 | 1.313 | 1.188 | 1.142 |
Cumulative % of variance | 11.852 | 20.085 | 27.875 | 33.917 | 39.490 | 44.820 | 49.536 | 54.062 | 58.158 | 62.095 |
Continuous variables | ||||||||||
Year | 0.447 | 0.273 | 0.468 | 0.276 | −0.116 | −0.236 | −0.071 | −0.076 | −0.061 | −0.055 |
Floors | 0.115 | −0.654 | 0.231 | 0.224 | 0.187 | −0.161 | −0.132 | −0.034 | 0.254 | 0.119 |
Categorical variables | ||||||||||
Nest | 0.737 | 0.362 | 0.589 | 0.651 | 0.696 | 0.709 | 0.652 | 0.418 | 0.574 | 0.264 |
Building | 0.518 | 0.466 | 0.223 | 0.155 | 0.079 | 0.069 | 0.023 | 0.082 | 0.051 | 0.217 |
Eaves | 0.314 | 0.046 | 0.029 | 0.082 | 0.047 | 0.037 | 0.042 | |||
Facade | 0.167 | 0.199 | 0.166 | 0.123 | 0.171 | 0.226 | 0.090 | 0.386 | 0.126 | |
Gutter | 0.451 | 0.022 | 0.081 | 0.077 | 0.047 | |||||
Holes | 0.132 | 0.018 | 0.136 | 0.173 | 0.223 | 0.019 | 0.015 | 0.027 | ||
Nests_Du | 0.017 | 0.018 | 0.064 | 0.058 | 0.081 | 0.251 | 0.050 | |||
Garden | 0.016 | 0.281 | 0.297 | 0.014 | 0.013 | |||||
Reform | 0.143 | 0.144 | 0.039 | 0.020 | 0.021 | 0.154 | 0.013 | |||
Roof | 0.713 | 0.215 | 0.387 | 0.284 | 0.414 | 0.171 | 0.204 | 0.132 | 0.042 | 0.175 |
Terrace | 0.100 | 0.090 | 0.032 | 0.066 | 0.047 | 0.014 | 0.070 | |||
Tree | 0.032 | 0.181 | 0.046 | 0.013 | 0.014 | 0.204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernat-Ponce, E.; Gil-Delgado, J.A.; López-Iborra, G.M. House Sparrow Nesting Site Selection in Urban Environments: A Multivariate Approach in Mediterranean Spain. Urban Sci. 2024, 8, 108. https://doi.org/10.3390/urbansci8030108
Bernat-Ponce E, Gil-Delgado JA, López-Iborra GM. House Sparrow Nesting Site Selection in Urban Environments: A Multivariate Approach in Mediterranean Spain. Urban Science. 2024; 8(3):108. https://doi.org/10.3390/urbansci8030108
Chicago/Turabian StyleBernat-Ponce, Edgar, José A. Gil-Delgado, and Germán M. López-Iborra. 2024. "House Sparrow Nesting Site Selection in Urban Environments: A Multivariate Approach in Mediterranean Spain" Urban Science 8, no. 3: 108. https://doi.org/10.3390/urbansci8030108
APA StyleBernat-Ponce, E., Gil-Delgado, J. A., & López-Iborra, G. M. (2024). House Sparrow Nesting Site Selection in Urban Environments: A Multivariate Approach in Mediterranean Spain. Urban Science, 8(3), 108. https://doi.org/10.3390/urbansci8030108