To What Extent Have Nature-Based Solutions Mitigated Flood Loss at a Regional Scale in the Philadelphia Metropolitan Area?
Abstract
:1. Introduction
2. NBS and Flood Loss
3. Methods
3.1. Study Area
3.2. Data
3.3. Data Analysis
4. Results
4.1. Spatial Pattern of NBS
4.2. Global Analysis of EALS Based on GLR Model
4.3. Spatial Heterogeneity of EALS Based on the GWR Model
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Donnell, E.C.; Thorne, C.R. Drivers of future urban flood risk. Philos. Trans. R. Soc. A 2020, 378, 3782019021620190216. [Google Scholar] [CrossRef]
- Pattison, I.; Lane, S.N. The link between land-use management and fluvial flood risk: A chaotic conception? Prog. Phys. Geogr. Earth Environ. 2012, 36, 72–92. [Google Scholar] [CrossRef]
- Venter, Z.S.; Krog, N.H.; Barton, D.N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Gerlak, A.K.; Mayer, B.; Evans, T.P.; Lansey, K.E. Urban resilience and green infrastructure systems: Towards a multidimensional evaluation. Curr. Opin. Environ. Sustain. 2020, 44, 42–47. [Google Scholar] [CrossRef]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals an increased proportion of the population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef]
- IPCC. IPCC WGII Sixth Assessment Report: Chapter 6: Cities, Settlements and Key Infrastructure; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- National Weather Service. NWS Preliminary US Flood Fatality Statistics. 2022. Available online: https://www.weather.gov/arx/usflood (accessed on 9 August 2023).
- Wing, O.E.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; Johnson, K.A.; Fargione, J.; Morefield, P. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- CoreLogic. Hurricane Report. 2021. Available online: https://www.preventionweb.net/publication/2021-hurricane-report (accessed on 23 July 2022).
- UN Habitat. Working for a Better Urban Future; UN Habitat: Nairobi, Kenya, 2018. [Google Scholar]
- Seto, K.C.; Güneralp, B.; RHutyr, L. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Chen, G.Z.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Kalantari, Z.; Hartmann, T.; Pereira, P. Conclusions. In Nature-Based Solutions for Flood Mitigation; Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2021; Volume 107. [Google Scholar]
- Hoyer, J.; Dickhaut, W.; Kronwitter, L.; Weber, B. Water Sensitive Urban Design: Principles and Inspiration for Sustainable Stormwater Management in the City of the Future; Jovis: Berlin, Germany, 2011. [Google Scholar]
- Samuels, P. The rise of natural flood management. J. Flood Risk Manag. 2022, 15, e12837. [Google Scholar] [CrossRef]
- Woodruff, S.; Bae, J.; Sohn, W.; Newman, G.; Tran, T.; Lee, J.; Wilkins, C.; Van Zandt, S.; Ndubisi, F. Planning, development pressure, and change in green infrastructure quantity and configuration in coastal Texas. Land Use Policy 2022, 114, 105893. [Google Scholar] [CrossRef]
- Razzaghi Asl, S.; Pearsall, H. How do Spatial Factors of Green Spaces Contribute to Flood Regulation in Urban Areas? A Systematic Mapping Approach. Prog. Phys. Geogr. Earth Environ. 2023, 47, 702–720. [Google Scholar] [CrossRef]
- Kim, M.; Song, K.; Chon, J. Key coastal landscape patterns for reducing flood vulnerability. Sci. Total Environ. 2021, 759, 143454. [Google Scholar] [CrossRef]
- Sakieh, Y. Understanding the effect of spatial patterns on the vulnerability of urban areas to flooding. Int. J. Disaster Risk Reduct. 2017, 25, 125–136. [Google Scholar] [CrossRef]
- Lallemant, D.; Hamel, P.; Balbi, M.; Ning Lim, T.; Schmitt, R.; Win, S. Nature-based solutions for flood risk reduction: A probabilistic modeling framework. One Earth 2021, 4, 1310–1321. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Park, E.; Sieh, K.; Dang, T.; Nina Lin, Y.; Yun, S.H. Dam failure and a catastrophic flood in the Mekong basin (Bolaven Plateau), southern Laos, 2018. Geomorphology 2020, 362, 107221. [Google Scholar] [CrossRef]
- Dottori, F.; Mentaschi, L.; Bianchi, A.; Alfieri, L.; Feyen, L. Cost-effective adaptation strategies to rising river flood risk in Europe. Nat. Clim. Chang. 2021, 13, 196–202. [Google Scholar] [CrossRef]
- IUCN. Position Paper for UNFCCC COP15, Copenhagen; IUCN: Gland, Switzerland, 2009. [Google Scholar]
- Prudencio, L.; Null, S. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, W.E.; Blessing, R.; Makinoc, T.; Shepard, C.C. Evaluating the effects of open space configurations in reducing flood damage along the Gulf of Mexico coast. Landsc. Urban Plan. 2017, 167, 225–231. [Google Scholar] [CrossRef]
- Castellar, J.A.C.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, I.; Corominas, L.J.; Comas Acuña, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Kousky, C.; Walls, M. Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. Ecol. Econ. 2014, 104, 119–128. [Google Scholar] [CrossRef]
- Sörensen, J.; Emilsson, T. Evaluating Flood Risk Reduction by Urban Blue-Green Infrastructure Using Insurance Data. J. Water Resour. Plan. Manag. 2019, 145, 04018099. [Google Scholar] [CrossRef]
- Brody, S.D.; Peacock, W.G.; Gunn, J. Ecological indicators of flood risk along the Gulf of Mexico. Ecol. Indic. 2012, 18, 493–500. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Behera, B. Does forest cover help prevent flood damage? Empirical evidence from India. Glob. Environ. Chang. 2018, 53, 78–89. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.; Li, N.; Wang, S. Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landsc. Urban Plan. 2015, 140, 8–16. [Google Scholar] [CrossRef]
- Yao, L.; Chen, L.; Wei, W. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China. Int. J. Environ. Res. Public Health 2017, 14, 239. [Google Scholar] [CrossRef]
- Lee, H.K. A panel data analysis of a spatial measurement of green infrastructure and its potential effectiveness on peak streamflow. Environ. Dev. Sustain. 2020, 22, 469–500. [Google Scholar] [CrossRef]
- Li, L.; Eetvelde, V.V.; Cheng, X.; Uyttenhove, P. Assessing stormwater runoff reduction capacity of existing green infrastructure in the city of Ghent. Int. J. Sustain. Dev. World Ecol. 2020, 27, 749–761. [Google Scholar] [CrossRef]
- Peng, Z.; Jinyan, K.; Wenbin, P.; Xin, Z.; Yuanbin, C. Effects of Low-Impact Development on Urban Rainfall Runoff under Different Rainfall Characteristics. Pol. J. Environ. Stud. 2019, 28, 771–783. [Google Scholar] [CrossRef]
- U.S. Census Bureau. Selected Population Characteristics, 2016–2020 American Community Survey 5-Year Estimates. 2020. Available online: http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_11_5YR_DP04 (accessed on 9 November 2023).
- Rossi, M.L.; Kremer, P.; Cravotta, C.A.; Scheirer, K.E.; Goldsmith, S.T. Long-term impacts of impervious surface cover change and roadway deicing agent application on chloride concentrations in exurban and suburban watersheds. Sci. Total Environ. 2022, 851, 157933. [Google Scholar] [CrossRef]
- Montgomery County Department of Emergency Services. Montgomery County Hazard Mitigation Plan; Montgomery County Department of Emergency Services: Norristown, PA, USA, 2022.
- The Reporter. Year in Review: Ida Leaves Mark in Montgomery County with Historic Flooding, Tornado Damage. 2021. Available online: https://www.thereporteronline.com/2021/12/31/year-in-review-ida-leaves-mark-on-montgomery-county-with-historic-flooding-tornado-damage/ (accessed on 17 July 2023).
- Kunkel, K.E.; Karl, T.R.; Squires, M.F.; Yin, X.; Stegall, S.T.; Easterling, D.R. Precipitation extremes: Trends and relationships with average precipitation and precipitable Water in the contiguous United States. J. Appl. Meteorol. Climatol. 2020, 59, 125–142. [Google Scholar] [CrossRef]
- FEMA. National Risk Index: Technical Documentation. 2023. Available online: https://www.fema.gov/sites/default/files/documents/fema_national-risk-index_technical-documentation.pdf (accessed on 6 November 2023).
- Zuzak, C.; Mowrer, M.; Goodenough, E.; Burns, J.; Ranalli, N.; Rozelle, J. The national risk index: Establishing a nationwide baseline for natural hazard risk in the US. Nat. Hazards 2022, 114, 2331–2355. [Google Scholar] [CrossRef]
- Sohn, W.; Bae, J.; Newman, G. Green infrastructure for coastal flood protection: The longitudinal impacts of green infrastructure patterns on flood damage. Appl. Geogr. 2021, 135, 102565. [Google Scholar] [CrossRef]
- Park, Y.; Guldmann, J.M. Understanding disparities in community green accessibility under alternative green measures: A metropolitan-wide analysis of Columbus, Ohio, and Atlanta, Georgia. Landsc. Urban Plan. 2020, 200, 103806. [Google Scholar] [CrossRef]
- Bai, T.; Mayer, A.L.; Shuster, W.D.; Tian, G. The Hydrologic Role of Urban Green Space in Mitigating Flooding (Luohe, China). Sustainability 2018, 10, 3584. [Google Scholar] [CrossRef]
- Kim, H.W.; Park, Y. Urban green infrastructure and local flooding: The impact of landscape patterns on peak runoff in four Texas MSAs. Appl. Geogr. 2016, 77, 72–81. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS Help; University of Massachusetts: Amherst, MA, USA, 2015. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Pearsall, H.; Christman, Z. Tree-lined lanes or vacant lots? Evaluating non-stationarity between urban greenness and socio-economic conditions in Philadelphia, Pennsylvania, USA at multiple scales. Appl. Geogr. 2012, 35, 257–264. [Google Scholar] [CrossRef]
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long-term trends and changes. Glob. Environ. Chang. 2014, 22, 823–835. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, E. Open space protection and flood mitigation: A national study. Land Use Policy 2013, 32, 89–95. [Google Scholar] [CrossRef]
- Anselin, L. Spatial econometrics. In Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Fotheringham, A.; Brunsdon, C.F.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: West Sussex, UK, 2002. [Google Scholar]
- Brundson, C.; Fotheringham, A.S.; Charlton, M. Geographically weighted regression: A method for exploring spatial non-stationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar]
- Bagstad, K.J.; Villa, F.; Johnson, G.W.; Voigt, B. ARIES (Artificial Intelligence for Ecosystem Services) v2.1. User Guide and Technical Documentation; The Nature Conservancy: Arlington, VA, USA; Conservation Biology Institute: Corvallis, OR, USA; World Wildlife Fund: Morges, Switzerland, 2013. [Google Scholar]
- Brody, S.D.; Zahran, S. Examining the impact of the built environment on flood losses in Texas. WIT Trans. Ecol. Environ. 2007, 102, 389–398. [Google Scholar]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Tariq, M.A.; Rajabi, Z.; Muttil, N. An Evaluation of Risk-Based Agricultural Land-Use Adjustments under a Flood Management Strategy in a Floodplain. Hydrology 2021, 8, 53. [Google Scholar] [CrossRef]
- Kim, H.Y. Analyzing green space as a flooding mitigation—Storm Chaba case in South Korea. Geomat. Nat. Hazard Risk 2021, 12, 1181–1194. [Google Scholar] [CrossRef]
Variable | Source | Range | Mean |
---|---|---|---|
Dependent variable Expected Annual Loss Score (EALS) | National Risk Index dataset for flooding | 0~38 | 13.4 |
Independent variables NBS in floodplains (NBSF) area (km2) Impervious area (IA) percentage Shape index (SI) Contiguity index (CONTIG) Control variable Population density (per acre) (PD) | National Flood Hazard Layer (NFHL) NLCD 2019 NLCD 2019 NLCD 2019 U.S. census tract data | 0~3.2 1.83~74.1 13.2~100.98 0.7~0.8 0.31~30.32 | 0.31 27.7 74 0.75 5.55 |
Variable | Coefficient | Robust SE | Robust t | Robust P | VIF | Moran’s I |
---|---|---|---|---|---|---|
Intercept | −44.44 | 19.07 | −2.32 | 0.020 | --- | ---- |
NBSF | 6.428 | 1.264 | 5.083 | 0.000 * | 1.504 | 0.21 * |
IA | 0.175 | 0.059 | 2.961 | 0.0034 * | 2.823 | 0.402 * |
SI | −0.018 | 0.0242 | −0.780 | 0.435 | 1.071 | 0.598 * |
CONTIG | 72.587 | 24.892 | 2.915 | 0.0039 * | 1.244 | 0.297 * |
PD | −0.451 | 0.148 | −3.046 | 0.0026 * | 1.996 | 0.299 * |
Model Diagnostics |
Variable | GWR Coefficients | Directions of Relationship in the GWR Model | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | + (%) | +sig. (%) | − (%) | −sig. (%) | |
Intercept | 0.2085 | 0.3209 | 0.1337 | 0.1672 | --- | --- | --- | --- |
NBSF | 0.3087 | 1.0887 | 0.6244 | 0.2090 | 100.00% | 100.00% | 0.00% | 0.00% |
IA | 0.2856 | 0.4167 | 0.3624 | 0.0294 | 100.00% | 100.00% | 0.00% | 0.00% |
SI | −0.1718 | −0.0309 | −0.1015 | 0.0313 | 0.00% | 0.00% | 100.00% | 00.00% |
CONTIG | 0.3387 | 1.0227 | 0.2353 | 0.2816 | 80.00% | 21.90% | 20.00% | 0.00% |
PD | −0.3912 | −0.2416 | −0.312 | 0.0318 | 0.00% | 0.00% | 100.00% | 100.00% |
Model Diagnostics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razzaghi Asl, S. To What Extent Have Nature-Based Solutions Mitigated Flood Loss at a Regional Scale in the Philadelphia Metropolitan Area? Urban Sci. 2023, 7, 122. https://doi.org/10.3390/urbansci7040122
Razzaghi Asl S. To What Extent Have Nature-Based Solutions Mitigated Flood Loss at a Regional Scale in the Philadelphia Metropolitan Area? Urban Science. 2023; 7(4):122. https://doi.org/10.3390/urbansci7040122
Chicago/Turabian StyleRazzaghi Asl, Sina. 2023. "To What Extent Have Nature-Based Solutions Mitigated Flood Loss at a Regional Scale in the Philadelphia Metropolitan Area?" Urban Science 7, no. 4: 122. https://doi.org/10.3390/urbansci7040122
APA StyleRazzaghi Asl, S. (2023). To What Extent Have Nature-Based Solutions Mitigated Flood Loss at a Regional Scale in the Philadelphia Metropolitan Area? Urban Science, 7(4), 122. https://doi.org/10.3390/urbansci7040122