Spatial Analysis of Risk Exposure of Urban Trees: A Case Study from Bologna (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Open-Source Data
2.2.2. Urban Tree Data
2.2.3. Covariates
2.3. Data Analysis
2.4. Statistical Analysis
2.5. Additional Notes
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, M.; Ries, P.D. Planting Free Trees on Private Property: Understanding Urban Residents’ Motivations and Hesitations. Urban For. Urban Green. 2022, 71, 127557. [Google Scholar] [CrossRef]
- Suchocka, M.; Kostrzewa, K. Urban Trees Management Methods and Their Suitability for Creating Databases. Ecol. Quest. 2019, 30, 67–75. [Google Scholar] [CrossRef]
- Endreny, T.; Santagata, R.; Perna, A.; Stefano, C.D.; Rallo, R.F.; Ulgiati, S. Implementing and Managing Urban Forests: A Much Needed Conservation Strategy to Increase Ecosystem Services and Urban Wellbeing. Ecol. Model. 2017, 360, 328–335. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, J.; Hai, T.; Mohammed, M.N.; Yaseen, Z.M.; Yang, X.; Zain, J.M.; Zhang, R.; Xu, Q. Design of Low-Energy Buildings in Densely Populated Urban Areas Based on IoT. Energy Rep. 2022, 8, 4822–4833. [Google Scholar] [CrossRef]
- Williams, N.S.G.; Hahs, A.K.; Vesk, P.A. Urbanisation, Plant Traits and the Composition of Urban Floras. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 78–86. [Google Scholar] [CrossRef]
- Bernatzky, A. The Contribution of Tress and Green Spaces to a Town Climate. Energy Build. 1982, 5, 1–10. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in Land Surface Temperature and Cooling Efficiency of Green Space in Rapid Urbanization: The Case of Fuzhou City, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Kosmala, M.; Rosłon-Szeryńska, E.; Suchocka, M. Influence of Mechanical Damage on the Condition of Trees. Ann. Wars. Univ. Life Sci.—SGGW 2008, 29, 137–144. [Google Scholar]
- Roman, L.A.; Battles, J.J.; McBride, J.R. Determinants of Establishment Survival for Residential Trees in Sacramento County, CA. Landsc. Urban Plan. 2014, 129, 22–31. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, D.; Pietzarka, U.; Roloff, A. Assessing the Adaptability of Urban Tree Species to Climate Change Impacts: A Case Study in Shanghai. Urban For. Urban Green. 2021, 62, 127186. [Google Scholar] [CrossRef]
- Goudriaan, J.; Zadoks, J.C. Global Climate Change: Modelling the Potential Responses of Agro-Ecosystems with Special Reference to Crop Protection. Environ. Pollut. 1995, 87, 215–224. [Google Scholar] [CrossRef]
- Wattenhofer, D.J.; Johnson, G.R. Understanding Why Young Urban Trees Die Can Improve Future Success. Urban For. Urban Green. 2021, 64, 127247. [Google Scholar] [CrossRef]
- McPherson, E.G.; Berry, A.M.; van Doorn, N.S. Performance Testing to Identify Climate-Ready Trees. Urban For. Urban Green. 2018, 29, 28–39. [Google Scholar] [CrossRef]
- Soares, A.L.; Rego, F.C.; McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Xiao, Q. Benefits and Costs of Street Trees in Lisbon, Portugal. Urban For. Urban Green. 2011, 10, 69–78. [Google Scholar] [CrossRef]
- Peng, R.; Cao, G.; Liu, T. Neighboring Effects on Ecological Functions: A New Approach and Application in Urbanizing China. Land 2022, 11, 987. [Google Scholar] [CrossRef]
- Alvarez, S.; Soto, J.R.; Escobedo, F.J.; Lai, J.; Kibria, A.S.M.G.; Adams, D.C. Heterogeneous Preferences and Economic Values for Urban Forest Structural and Functional Attributes. Landsc. Urban Plan. 2021, 215, 104234. [Google Scholar] [CrossRef]
- Serdar Yakut, E.; Erdem Kaya, M. Generative Landscape Modeling in Urban Open Space Design: An Experimental Approach. J. Digit. Landsc. Archit. 2019, 4, 231–238. [Google Scholar] [CrossRef]
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green Streets—Quantifying and Mapping Urban Trees with Street-Level Imagery and Computer Vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Castillo, M.D.; Anenberg, S.C.; Chafe, Z.A.; Huxley, R.; Johnson, L.S.; Kheirbek, I.; Malik, M.; Marshall, J.D.; Naidoo, S.; Nelson, M.L.; et al. Quantifying the Health Benefits of Urban Climate Mitigation Actions: Current State of the Epidemiological Evidence and Application in Health Impact Assessments. Front. Sustain. Cities 2021, 3, 768227. [Google Scholar] [CrossRef]
- Naidoo, R.; Balmford, A.; Costanza, R.; Fisher, B.; Green, R.E.; Lehner, B.; Malcolm, T.R.; Ricketts, T.H. Global Mapping of Ecosystem Services and Conservation Priorities. Proc. Natl. Acad. Sci. USA 2008, 105, 9495–9500. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, Mapping, and Quantifying Cultural Ecosystem Services at Community Level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Locosselli, G.M.; Miyahara, A.A.L.; Cerqueira, P.; Buckeridge, M.S. Climate Drivers of Tree Fall on the Streets of São Paulo, Brazil. Trees 2021, 35, 1807–1815. [Google Scholar] [CrossRef]
- Conway, T.M.; Yip, V. Assessing Residents’ Reactions to Urban Forest Disservices: A Case Study of a Major Storm Event. Landsc. Urban Plan. 2016, 153, 1–10. [Google Scholar] [CrossRef]
- Dunn, R.R. Global Mapping of Ecosystem Disservices: The Unspoken Reality That Nature Sometimes Kills Us. Biotropica 2010, 42, 555–557. [Google Scholar] [CrossRef]
- Koeser, A. Municipal Tree Risk Assessment in the United States: Findings from a Comprehensive Survey of Urban Forest Management. Arboric. J. 2016, 38, 218–229. [Google Scholar] [CrossRef]
- Tomalak, M.; Rossi, E.; Ferrini, F.; Moro, P. Negative Aspects and Hazardous Effects of Forest Environment on Human Health. In Forests, Trees and Human Health; Springer: Berlin/Heidelberg, Germany, 2010; pp. 77–126. ISBN 978-90-481-9805-4. [Google Scholar]
- Jahani, A.; Saffariha, M. Environmental Decision Support System for Plane Trees Failure Prediction: A Comparison of Multi-Layer Perceptron and Random Forest Modeling Approaches. Agrosyst. Geosci. Environ. 2022, 5, e20316. [Google Scholar] [CrossRef]
- Luttik, J. The Value of Trees, Water and Open Space as Reflected by House Prices in the Netherlands. Landsc. Urban Plan. 2000, 48, 161–167. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Sipilä, M. Hopping on One Leg—The Challenge of Ecosystem Disservices for Urban Green Management. Urban For. Urban Green. 2009, 8, 309–315. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A Systematic Quantitative Review of Urban Tree Benefits, Costs, and Assessment Methods across Cities in Different Climatic Zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- van Haaften, M.; Liu, Y.; Wang, Y.; Zhang, Y.; Gardebroek, C.; Heijman, W.; Meuwissen, M. Understanding tree failure—A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246805. [Google Scholar] [CrossRef]
- Manfra, R.; dos Santos Massoca, M.; Martins Cerqueira Uras, P.; Cavalari, A.A.; Maselli Locosselli, G. Average Height of Surrounding Buildings and District Age Are the Main Predictors of Tree Failure on the Streets of São Paulo/Brazil. Urban For. Urban Green. 2022, 74, 127665. [Google Scholar] [CrossRef]
- Donovan, G.H. Including Public-Health Benefits of Trees in Urban-Forestry Decision Making. Urban For. Urban Green. 2017, 22, 120–123. [Google Scholar] [CrossRef]
- Klein, R.W.; Koeser, A.K.; Hauer, R.J.; Hansen, G.; Escobedo, F.J. Risk Assessment and Risk Perception of Trees: A Review of Literature Relating to Arboriculture and Urban Forestry. Arboric. Urban For. 2019, 45, 26–38. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Li, Z.; Wen, J.; Tan, X. A Review of Research on Tree Risk Assessment Methods. Forests 2022, 13, 1556. [Google Scholar] [CrossRef]
- Koeser, A.K.; Thomas Smiley, E.; Hauer, R.J.; Kane, B.; Klein, R.W.; Landry, S.M.; Sherwood, M. Can Professionals Gauge Likelihood of Failure?—Insights from Tropical Storm Matthew. Urban For. Urban Green. 2020, 52, 126701. [Google Scholar] [CrossRef]
- Everham III, E.M.; Brokaw, N.V.L. Forest Damage and Recovery from Catastrophic Wind. Bot. Rev. 1996, 62, 113–185. [Google Scholar] [CrossRef]
- Hui, K.K.W.; Wong, M.S.; Kwok, C.Y.T.; Li, H.; Abbas, S.; Nichol, J.E. Unveiling Falling Urban Trees before and during Typhoon Higos (2020): Empirical Case Study of Potential Structural Failure Using Tilt Sensor. Forests 2022, 13, 359. [Google Scholar] [CrossRef]
- de Carvalho Maria, T.R.B.; Biondi, D.; Behling, A.; dos Reis, A.R.N.; Zamproni, K.; Ho, T.L. Application of Artificial Intelligence for Tree Risk Assessment Optimization in Itanhaém—São Paulo, Brazil. Urban For. Urban Green. 2023, 81, 127844. [Google Scholar] [CrossRef]
- Coelho-Duarte, A.P.; Daniluk-Mosquera, G.; Gravina, V.; Vallejos-Barra, Ó.; Ponce-Donoso, M. Tree Risk Assessment: Component Analysis of Six Visual Methods Applied in an Urban Park, Montevideo, Uruguay. Urban For. Urban Green. 2021, 59, 127005. [Google Scholar] [CrossRef]
- Adesoye, P.O.; Dondofema, F. Assessing and Classifying the Health and Risk Status of Avenue Trees. Arboric. J. 2021, 43, 93–114. [Google Scholar] [CrossRef]
- van Duijne, F.H.; van Aken, D.; Schouten, E.G. Considerations in Developing Complete and Quantified Methods for Risk Assessment. Saf. Sci. 2008, 46, 245–254. [Google Scholar] [CrossRef]
- Fink, S. Hazard Tree Identification by Visual Tree Assessment (VTA): Scientifically Solid and Practically Approved. Arboric. J. 2009, 32, 139–155. [Google Scholar] [CrossRef]
- Bertolin, C.; Caratelli, A.; Grimaldi, M.; Massi, M. Analysis of Jerk as a Novel Tree-Fails Hazard Index: A Case Study Applied to Tree Monitoring in the Archaeological Park of the Colosseum in Rome (Italy). Int. J. Disaster Risk Reduct. 2021, 56, 102122. [Google Scholar] [CrossRef]
- Kontogianni, A.; Tsitsoni, T.; Goudelis, G. An Index Based on Silvicultural Knowledge for Tree Stability Assessment and Improved Ecological Function in Urban Ecosystems. Ecol. Eng. 2011, 37, 914–919. [Google Scholar] [CrossRef]
- Meunpong, P.; Buathong, S.; Kaewgrajang, T. Google Street View Virtual Survey and In-Person Field Surveys: An Exploratory Comparison of Urban Tree Risk Assessment. Arboric. J. 2019, 41, 226–236. [Google Scholar] [CrossRef]
- Ellison, M.J. Quantified Tree Risk Assessment Used in the Management of Amenity Trees. Arboric. Urban For. 2005, 31, 57–65. [Google Scholar] [CrossRef]
- Helliwell, D.R. Acceptable Levels of Risk Associated with Trees. Arboric. J. 1990, 14, 159–162. [Google Scholar] [CrossRef]
- Sreetheran, M.; Adnan, M.; Azuar, A.K.K. Street Tree Inventory and Tree Risk Assessment of Selected Major Roads in Kuala Lumpur, Malaysia. Arboric. Urban For. 2011, 37, 226–235. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Ke, Y.; Xiao, J. Assessing the Structure and Stability of Street Trees in Lhasa, China. Urban For. Urban Green. 2012, 11, 432–438. [Google Scholar] [CrossRef]
- Nitoslawski, S.A.; Galle, N.J.; Van Den Bosch, C.K.; Steenberg, J.W.N. Smarter Ecosystems for Smarter Cities? A Review of Trends, Technologies, and Turning Points for Smart Urban Forestry. Sustain. Cities Soc. 2019, 51, 101770. [Google Scholar] [CrossRef]
- Rosier, J.F.; Taubenböck, H.; Verburg, P.H.; van Vliet, J. Fusing Earth Observation and Socioeconomic Data to Increase the Transferability of Large-Scale Urban Land Use Classification. Remote Sens. Environ. 2022, 278, 113076. [Google Scholar] [CrossRef]
- Halla, P.; Merino-Saum, A.; Binder, C. How to Link Sustainability Assessments with Local Governance?—Connecting Indicators to Institutions and Controversies. Environ. Impact Assess. Rev. 2022, 93, 106741. [Google Scholar] [CrossRef]
- Nyelele, C.; Kroll, C.N. A Multi-Objective Decision Support Framework to Prioritize Tree Planting Locations in Urban Areas. Landsc. Urban Plan. 2021, 214, 104172. [Google Scholar] [CrossRef]
- Pantaloni, M.; Marinelli, G.; Santilocchi, R.; Minelli, A.; Neri, D. Sustainable Management Practices for Urban Green Spaces to Support Green Infrastructure: An Italian Case Study. Sustainability 2022, 14, 4243. [Google Scholar] [CrossRef]
- Elliot, T.; Goldstein, B.; Gómez-Baggethun, E.; Proença, V.; Rugani, B. Ecosystem Service Deficits of European Cities. Sci. Total Environ. 2022, 837, 155875. [Google Scholar] [CrossRef] [PubMed]
- Jennings, T.E.; Jean-Philippe, S.R.; Willcox, A.; Zobel, J.M.; Poudyal, N.C.; Simpson, T. The Influence of Attitudes and Perception of Tree Benefits on Park Management Priorities. Landsc. Urban Plan. 2016, 153, 122–128. [Google Scholar] [CrossRef]
- Pauleit, S.; Jones, N.; Garcia-Martin, G.; Garcia-Valdecantos, J.; Rivière, L.; Vidal-Beaudet, L.; Bodson, M.; Randrup, T. Tree Establishment Practice in Towns and Cities—Results from a European Survey. Urban For. Urban Green. 2002, 1, 83–96. [Google Scholar] [CrossRef]
- Khalaim, O.; Zabarna, O.; Kazantsev, T.; Panas, I.; Polishchuk, O. Urban Green Infrastructure Inventory as a Key Prerequisite to Sustainable Cities in Ukraine under Extreme Heat Events. Sustainability 2021, 13, 2470. [Google Scholar] [CrossRef]
- Ma, B.; Hauer, R.J.; Östberg, J.; Koeser, A.K.; Wei, H.; Xu, C. A Global Basis of Urban Tree Inventories: What Comes First the Inventory or the Program. Urban For. Urban Green. 2021, 60, 127087. [Google Scholar] [CrossRef]
- Stadnicka, D.; Antosz, K.; Chandima Ratnayake, R.M. Development of an Empirical Formula for Machine Classification: Prioritization of Maintenance Tasks. Saf. Sci. 2014, 63, 34–41. [Google Scholar] [CrossRef]
- Neto, M.d.C.; Sarmento, P. Assessing Lisbon Trees’ Carbon Storage Quantity, Density, and Value Using Open Data and Allometric Equations. Information 2019, 10, 133. [Google Scholar] [CrossRef]
- Ruijer, E.; Grimmelikhuijsen, S.; Meijer, A. Open Data for Democracy: Developing a Theoretical Framework for Open Data Use. Gov. Inf. Q. 2017, 34, 45–52. [Google Scholar] [CrossRef]
- Attard, J.; Orlandi, F.; Scerri, S.; Auer, S. A Systematic Review of Open Government Data Initiatives. Gov. Inf. Q. 2015, 32, 399–418. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, H.; Shao, Q.; Shao, T. Construction of the Evaluation Model of Open Government Data Platform: From the Perspective of Citizens’ Sustainable Use. Sustainability 2022, 14, 1415. [Google Scholar] [CrossRef]
- Bulai, V.-C.; Horobeț, A.; Belascu, L. Improving Local Governments’ Financial Sustainability by Using Open Government Data: An Application of High-Granularity Estimates of Personal Income Levels in Romania. Sustainability 2019, 11, 5632. [Google Scholar] [CrossRef]
- Kontokosta, C.E.; Hong, B. Bias in Smart City Governance: How Socio-Spatial Disparities in 311 Complaint Behavior Impact the Fairness of Data-Driven Decisions. Sustain. Cities Soc. 2021, 64, 102503. [Google Scholar] [CrossRef]
- Webber, M.K.; Samaras, C. A Review of Decision Making Under Deep Uncertainty Applications Using Green Infrastructure for Flood Management. Earth’s Future 2022, 10, e2021EF002322. [Google Scholar] [CrossRef]
- Galle, N.J.; Halpern, D.; Nitoslawski, S.; Duarte, F.; Ratti, C.; Pilla, F. Mapping the Diversity of Street Tree Inventories across Eight Cities Internationally Using Open Data. Urban For. Urban Green. 2021, 61, 127099. [Google Scholar] [CrossRef]
- Baines, O.; Wilkes, P.; Disney, M. Quantifying Urban Forest Structure with Open-Access Remote Sensing Data Sets. Urban For. Urban Green. 2020, 50, 126653. [Google Scholar] [CrossRef]
- ISTAT Popolazione Residente. Available online: https://demo.istat.it/app/?l=it&a=2022&i=POS (accessed on 30 August 2023).
- Popolazione|Quartieri. Available online: http://inumeridibolognametropolitana.it/quartieri/popolazione (accessed on 30 August 2023).
- Comune di Bologna Open Data Bologna. Available online: https://opendata.comune.bologna.it/pages/home/ (accessed on 21 August 2023).
- Randrup, T.B.; McPherson, E.G.; Costello, L.R. A Review of Tree Root Conflicts with Sidewalks, Curbs, and Roads. Urban Ecosyst. 2003, 5, 209–225. [Google Scholar] [CrossRef]
- Sharma, R.P.; Vacek, Z.; Vacek, S. Modeling Individual Tree Height to Diameter Ratio for Norway Spruce and European Beech in Czech Republic. Trees 2016, 30, 1969–1982. [Google Scholar] [CrossRef]
- Opio, C.; Jacob, N.; Coopersmith, D. Height to Diameter Ratio as a Competition Index for Young Conifer Plantations in Northern British Columbia, Canada. For. Ecol. Manag. 2000, 137, 245–252. [Google Scholar] [CrossRef]
- Matheny, N.; Clark, J. Tree Risk Assessment: What We Know (and What We Don’t Know). Arborist News 2009, 18, 28–33. [Google Scholar]
- Giles, P.T.; Franklin, S.E. An Automated Approach to the Classification of the Slope Units Using Digital Data. Geomorphology 1998, 21, 251–264. [Google Scholar] [CrossRef]
- Eberly, L.E. Multiple Linear Regression. In Topics in Biostatistics; Ambrosius, W.T., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2007; pp. 165–187. ISBN 978-1-59745-530-5. [Google Scholar]
- Olive, D.J. Multiple Linear Regression. In Linear Regression; Olive, D.J., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 17–83. ISBN 978-3-319-55252-1. [Google Scholar]
- Masini, E.; Tomao, A.; Corona, P.; Fattorini, L.; Giuliarelli, D.; Portoghesi, L.; Agrimi, M. The Ecosystem Disservices of Trees on Sidewalks: A Study Based on a Municipality Urban Tree Inventory in Central Italy. Urban For. Urban Green. 2023, 86, 128007. [Google Scholar] [CrossRef]
- North, E.A.; D’Amato, A.W.; Russell, M.B.; Johnson, G.R. The Influence of Sidewalk Replacement on Urban Street Tree Growth. Urban For. Urban Green. 2017, 24, 116–124. [Google Scholar] [CrossRef]
- Limoges, S.; Pham, T.-T.-H.; Apparicio, P. Growing on the Street: Multilevel Correlates of Street Tree Growth in Montreal. Urban For. Urban Green. 2018, 31, 15–25. [Google Scholar] [CrossRef]
- Tomao, A.; Secondi, L.; Corona, P.; Giuliarelli, D.; Quatrini, V.; Agrimi, M. Can Composite Indices Explain Multidimensionality of Tree Risk Assessment? A Case Study in an Historical Monumental Complex. Urban For. Urban Green. 2015, 14, 456–465. [Google Scholar] [CrossRef]
- Czaja, M.; Kołton, A.; Muras, P. The Complex Issue of Urban Trees—Stress Factor Accumulation and Ecological Service Possibilities. Forests 2020, 11, 932. [Google Scholar] [CrossRef]
- Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.; Van Slycken, J. The Selection of Plant Materials for Street Trees, Park Trees and Urban Woodland. In Urban Forests and Trees: A Reference Book; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 257–280. ISBN 978-3-540-27684-5. [Google Scholar]
- Jeong, N.-R.; Han, S.-W.; Ko, B. Effects of Green Network Management of Urban Street Trees on Airborne Particulate Matter (PM2.5) Concentration. Int. J. Environ. Res. Public Health 2023, 20, 2507. [Google Scholar] [CrossRef]
- Breyer, B.; Mohr, H. Right Tree, Right Place for Whom? Environmental Justice and Practices of Urban Forest Assessment. Local Environ. 2023, 28, 1082–1096. [Google Scholar] [CrossRef]
- Elze, S.; Banzhaf, E. High-Precision Monitoring of Urban Structures to Understand Changes in Multiple Ecosystem Services. Urban For. Urban Green. 2022, 73, 127616. [Google Scholar] [CrossRef]
- Jeong, J.; Park, C.R. Developing a Mapping Procedure for Urban Forests Using Online Map Services and Sentinel-2A Images. Urban For. Urban Green. 2023, 89, 128095. [Google Scholar] [CrossRef]
- Bolyn, C.; Lejeune, P.; Michez, A.; Latte, N. Mapping Tree Species Proportions from Satellite Imagery Using Spectral–Spatial Deep Learning. Remote Sens. Environ. 2022, 280, 113205. [Google Scholar] [CrossRef]
- Lee, L.S.H.; Zhang, H.; Ng, K.T.K.; Lo, S.C.; Yu, A.S.L. Streamlining Urban Forest Monitoring Based on a Large-Scale Tree Survey: A Case Study of Highway Vegetation in Hong Kong. Environ. Monit. Assess. 2023, 195, 198. [Google Scholar] [CrossRef]
- Grant, A.; Millward, A.A.; Edge, S.; Roman, L.A.; Teelucksingh, C. Where Is Environmental Justice? A Review of US Urban Forest Management Plans. Urban For. Urban Green. 2022, 77, 127737. [Google Scholar] [CrossRef]
- Grant, A.; Millward, A.A.; Edge, S. Pursuit of Environmental Justice in Urban Forest Planning and Practice. Front. Sustain. Cities 2023, 5, 1233878. [Google Scholar] [CrossRef]
- Speak, A.F.; Salbitano, F. The Impact of Pruning and Mortality on Urban Tree Canopy Volume. Urban For. Urban Green. 2023, 79, 127810. [Google Scholar] [CrossRef]
- Suttle, R.; Kane, B.; Bloniarz, D. Comparing the Structure, Function, Value, and Risk of Managed and Unmanaged Trees along Rights-of-Way and Streets in Massachusetts. Forests 2022, 13, 1602. [Google Scholar] [CrossRef]
- Young, G.W.; Kitchin, R. Creating Design Guidelines for Building City Dashboards from a User’s Perspectives. Int. J. Hum.-Comput. Stud. 2020, 140, 102429. [Google Scholar] [CrossRef]
- Myers, G.; Mullenbach, L.E.; Jolley, J.A.; Cutts, B.B.; Larson, L.R. Advancing Social Equity in Urban Tree Planting: Lessons Learned from an Integrative Review of the Literature. Urban For. Urban Green. 2023, 89, 128116. [Google Scholar] [CrossRef]
- Dahle, G.; Grabosky, J.; Kane, B.; Miesbauer, J.; Peterson, W.; Telewski, F.W.; Koeser, A.; Watson, G.W. Tree Biomechanics: A White Paper from the 2010 International Meeting and Research Summit at the Morton Arboretum (Lisle, Illinois, U.S.). Arboric. Urban For. 2014, 40, 309–318. [Google Scholar]
- Ghani, M.; Stokes, A.; Fourcaud, T. The Effect of Root Architecture and Root Loss through Trenching on the Anchorage of Tropical Urban Trees (Eugenia Grandis Wight). Trees 2008, 23, 197–209. [Google Scholar] [CrossRef]
- Peterson, C.J. Consistent Influence of Tree Diameter and Species on Damage in Nine Eastern North America Tornado Blowdowns. For. Ecol. Manag. 2007, 250, 96–108. [Google Scholar] [CrossRef]
- James, K.; Dahle, G.; Grabosky, J.; Kane, B.; Detter, A. Tree Biomechanics Literature Review: Dynamics. Arboric. Urban For. 2014, 40, 1–15. [Google Scholar] [CrossRef]
- Nikiforova, A.; McBride, K. Open Government Data Portal Usability: A User-Centred Usability Analysis of 41 Open Government Data Portals. Telemat. Inform. 2021, 58, 101539. [Google Scholar] [CrossRef]
- Hein, S.; Reich, J.; Marks, S.; Thuma, P.E.; Grigorenko, E.L. Getting Something out of Nothing: Analyzing Patterns of Null Responses to Improve Data Collection Methods in Sub-Saharan Africa. Learn. Individ. Differ. 2016, 46, 11–16. [Google Scholar] [CrossRef]
- Easley, T.; Chen, R.; Hannon, K.; Dutt, R.; Bijsterbosch, J. Population Modeling with Machine Learning Can Enhance Measures of Mental Health—Open-Data Replication. Neuroimage Rep. 2023, 3, 100163. [Google Scholar] [CrossRef]
- Islam, M.A.; Sufian, M.A. Employing AI and ML for Data Analytics on Key Indicators: Enhancing Smart City Urban Services and Dashboard-Driven Leadership and Decision-Making. In Technology and Talent Strategies for Sustainable Smart Cities: Digital Futures; Emerald Publishing Limited: Bingley, UK, 2023; pp. 275–325. [Google Scholar]
- Östberg, J.; Wiström, B.; Randrup, T.B. The State and Use of Municipal Tree Inventories in Swedish Municipalities—Results from a National Survey. Urban Ecosyst. 2018, 21, 467–477. [Google Scholar] [CrossRef]
- Richiedei, A.; Pezzagno, M. Territorializing and Monitoring of Sustainable Development Goals in Italy: An Overview. Sustainability 2022, 14, 3056. [Google Scholar] [CrossRef]
Variable | Mean | Median | Min | Max | Standard Deviation |
---|---|---|---|---|---|
DN value | 154.53 | 154.50 | 57.00 | 255.00 | 56.77 |
Buildings | 762.77 | 3.50 | 0.00 | 5791.00 | 1500.59 |
Street | 2249.17 | 619.50 | 1.00 | 12,582.00 | 3346.41 |
Walking and cycle path | 717.37 | 127.00 | 0.00 | 5454.00 | 1299.36 |
MSE Root | 3.711.777 | R-Squared | 0.5791 |
Mean dependent variable | 15.452.551 | R-squared corrected | 0.5725 |
Coefficient variable | 2.402.048 |
Variable | DF | Sum of Squares | Mean-Squared | F-Value | p-Value |
---|---|---|---|---|---|
Intercept | 1 | 115.97 | 3.76088 | 30.84 | <0.0001 |
Buildings | 1 | 0.00461 | 0.00956 | 0.48 | 0.6300 |
Street | 1 | 0.04569 | 0.00490 | 9.32 | <0.0001 |
Walking and cycle path | 1 | −0.09442 | 0.01518 | −6.22 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caggiu, L.; Fiorani, F.; Corradini, E.; Felice, E.; Minelli, A. Spatial Analysis of Risk Exposure of Urban Trees: A Case Study from Bologna (Italy). Urban Sci. 2023, 7, 123. https://doi.org/10.3390/urbansci7040123
Caggiu L, Fiorani F, Corradini E, Felice E, Minelli A. Spatial Analysis of Risk Exposure of Urban Trees: A Case Study from Bologna (Italy). Urban Science. 2023; 7(4):123. https://doi.org/10.3390/urbansci7040123
Chicago/Turabian StyleCaggiu, Laura, Federico Fiorani, Elisa Corradini, Enrico Felice, and Alberto Minelli. 2023. "Spatial Analysis of Risk Exposure of Urban Trees: A Case Study from Bologna (Italy)" Urban Science 7, no. 4: 123. https://doi.org/10.3390/urbansci7040123
APA StyleCaggiu, L., Fiorani, F., Corradini, E., Felice, E., & Minelli, A. (2023). Spatial Analysis of Risk Exposure of Urban Trees: A Case Study from Bologna (Italy). Urban Science, 7(4), 123. https://doi.org/10.3390/urbansci7040123